scholarly journals Infiltration of surface water through subsidence failure assessment applying electric prospecting, case Aguascalientes Valley, Mexico

Author(s):  
Fernando Acuña-Lara ◽  
Jesús Pacheco-Martinez ◽  
Hugo Luna-Villavicencio ◽  
Martín Hernández-Marín ◽  
Norma González-Cervantes

Abstract. Land subsidence is an anthropogenic hazard triggered by different causes, one of them is groundwater overexploitation over aquifer systems composed for granular compressible sedimentary fill. One of the effects of this phenomenon is the generation and reactivation of ground failures, becoming risk points for aquifer pollution through the fast infiltration of contaminated water. A system of failures and fractures has developed in the Aguascalientes valley since 1980's when groundwater overexploitation became intensive. Currently, the entire valley present regional subsidence and several ground failures have developed; many of them crossing surficial water flows and sewage pipes, thus, inducing filtering of domestic wastewater to the subsoil and increasing the environmental hazard for the aquifer system. In this work, we present the results of a study to assess the surficial water infiltrations through a subsidence related ground failure crossing a small stream, which carries domestic wastewater. Additionally, we investigate the acquisition method of Electrical Resistivity Tomography (ERT) and the electrode placement more suitable to detect the flow of contaminated water through the studied ground failure. To find out the potential leakage, we use electric geophysical methods, applying Schlumberger, Wenner and dipole-dipole arrangements with electrode separations from 2.5 to 10 m in order to explore a depth from 9 to 30 m. The obtained results showed that the Schlumberger configuration appears to be more helpful to detect changes in the stratigraphy toward depth, while dipole-dipole and Wenner are more suitable to detect lateral variations such as the vertical wastewater leakage in the first 6 to 8 m depth. Resulted resistivity models showed that in the first 10 m depth, the contaminant flow follow with a vertical path through the ground failure, then, the it becomes horizontal, flowing through the more permeable soil strata. Therefore, for the studied sites, the filtration of domestic wastewater through ground failure does not represent an immediate hazard to the aquifer system. Nevertheless, ground failures crossing damaged wastewater pipes or contaminated surficial water flows in Aguascalientes Valley, could induce the infiltration of polluted water to the near surface strata, favoring a potential aquifer pollution in a long term.

Author(s):  
Martin Hernandez-Marin ◽  
Ruben Esquivel-Ramirez ◽  
Mario Eduardo Zermeño-De-Leon ◽  
Lilia Guerrero-Martinez ◽  
Jesus Pacheco-Martinez ◽  
...  

Abstract. In the Aguascalientes valley, middle Mexico, the demand of groundwater from the local aquifer system was suddenly increased after the late 1970s. Since then, several related problems have been occurring or become critical such as land subsidence, ground fissuring, and low-magnitude earthquakes. The most recent data of vertical deformation from PSInSAR, groundwater levels, and earthquakes, has provided critical information regarding the relationship amongst all these processes. In particular, that related to land subsidence, earth fissuring and seismicity. Regarding this, more satellite imagery and data from GPS stations are being revised as a possibility of a more generalized vertical deformation derived with low-magnitude seismicity. A particular seismic event recorded on 6 April 2019 has revealed critical information on the close association between vertical displacements occurred in active faults and low-magnitude seismic events.


2016 ◽  
Vol 82 (13) ◽  
pp. 3886-3891 ◽  
Author(s):  
Masayoshi Tanaka ◽  
William Knowles ◽  
Rosemary Brown ◽  
Nicole Hondow ◽  
Atsushi Arakaki ◽  
...  

ABSTRACTUsing microorganisms to remove waste and/or neutralize pollutants from contaminated water is attracting much attention due to the environmentally friendly nature of this methodology. However, cell recovery remains a bottleneck and a considerable challenge for the development of this process. Magnetotactic bacteria are a unique group of organisms that can be manipulated by an external magnetic field due to the presence of biogenic magnetite crystals formed within their cells. In this study, we demonstrated an account of accumulation and precipitation of amorphous elemental selenium nanoparticles within magnetotactic bacteria alongside and independent of magnetite crystal biomineralization when grown in a medium containing selenium oxyanion (SeO32−). Quantitative analysis shows that magnetotactic bacteria accumulate the largest amount of target molecules (Se) per cell compared with any other previously reported nonferrous metal/metalloid. For example, 2.4 and 174 times more Se is accumulated than Te taken up into cells and Cd2+adsorbed onto the cell surface, respectively. Crucially, the bacteria with high levels of Se accumulation were successfully recovered with an external magnetic field. The biomagnetic recovery and the effective accumulation of target elements demonstrate the potential for application in bioremediation of polluted water.IMPORTANCEThe development of a technique for effective environmental water remediation is urgently required across the globe. A biological remediation process of waste removal and/or neutralization of pollutant from contaminated water using microorganisms has great potential, but cell recovery remains a bottleneck. Magnetotactic bacteria synthesize magnetic particles within their cells, which can be recovered by a magnetic field. Herein, we report an example of accumulation and precipitation of amorphous elemental selenium nanoparticles within magnetotactic bacteria independent of magnetic particle synthesis. The cells were able to accumulate the largest amount of Se compared to other foreign elements. More importantly, the Se-accumulating bacteria were successfully recovered with an external magnetic field. We believe magnetotactic bacteria confer unique advantages of biomagnetic cell recovery and of Se accumulation, providing a new and effective methodology for bioremediation of polluted water.


Radiocarbon ◽  
2013 ◽  
Vol 55 (2) ◽  
pp. 951-962 ◽  
Author(s):  
Jonas Mažeika ◽  
Tõnu Martma ◽  
Rimantas Petrošius ◽  
Vaidotė Jakimavičiūtė-Maselienė ◽  
Žana Skuratovič

The assessment of construction sites for the new Visaginas Nuclear Power Plant (Visaginas NPP), including groundwater characterization, took place over the last few years. For a better understanding of the groundwater system, studies on radiocarbon; tritium; stable isotopes of hydrogen, oxygen, and carbon; and helium content were carried out at the location of the new NPP, at the Western and Eastern sites, as well as in the near-surface repository (NSR) site. Two critical depth zones in the Quaternary aquifer system were characterized by different groundwater residence times and having slightly different stable isotope features and helium content. The first shallow interval of the Quaternary multi-aquifer system consists of an unconfined aquifer and semiconfined aquifer. The second depth interval of the system is related to the lower Quaternary confined aquifer. Groundwater residence time in the first flow system was mainly based on tritium data and ranges from 6 to 60 yr. These aquifers are the most important in terms of safety assessment and are considered as a potential radionuclide transfer pathway in safety assessment. Groundwater residence time in the lower Quaternary aquifers based on 14C data varies from modern to several thousand years and in some intervals up to 10,500 yr.


Solid Earth ◽  
2016 ◽  
Vol 7 (2) ◽  
pp. 703-711 ◽  
Author(s):  
Esawy Kasem Mahmoud ◽  
Adel Mohamed Ghoneim

Abstract. The discharge of untreated waste water in Zefta drain and drain no. 5 is becoming a problem for many farmers in the El-Mahla El-Kobra area, Egypt. The discharged water contains high levels of contaminants considered hazardous to the ecosystem. Some plants, soil, water, and sediment samples were collected from the El-Mahla El-Kobra area to evaluate the contamination by heavy metals. The results showed that the heavy metals, pH, sodium adsorption ratio (SAR), biochemical oxygen demand (BOD), and chemical oxygen demand (COD) in the water of Zefta drain and drain no. 5 exceeded permissible limits for irrigation. In rice and maize shoots grown in soils irrigated by contaminated water from Zefta drain and drain no. 5, the bioaccumulation factors for Cd, Pb, Zn, Cu, and Mn were higher than 1.0. The heavy metals content of irrigated soils from Zefta drain and drain no. 5 exceeded the upper limit of background heavy metals. In this study, the mean contaminant factor values of the drain no. 5 sediments revealed that Zn, Mn, Cu, Cd, Pb, and Ni > 6, indicating very high contamination. The bioaccumulation coefficient values of Cynodon dactylon, Phragmites australis, and Typha domingensis aquatic plants growing in Zefta drain are high. These species can be considered as hyperaccumulators for the decontamination of contaminated water.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2876
Author(s):  
Mian Fawaz Ahmed ◽  
Muhammad Asad Abbas ◽  
Azhar Mahmood ◽  
Nasir M. Ahmad ◽  
Hifza Rasheed ◽  
...  

Water contaminated with highly hazardous metals including arsenic (As) is one of the major challenges faced by mankind in the present day. To address this pressing issue, hybrid beads were synthesized with various concentrations of zero valent iron oxide nanoparticles, i.e., 20% (FeCh-20), 40% (FeCh-40) and 60% (FeCh-60) impregnated into a polymer of chitosan. These hybrid beads were employed as an adsorbent under the optimized conditions of pH and time to facilitate the efficient removal of hazardous arsenic by adsorption cum reduction processes. X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Brunauer- Emmett-Teller BET, a porosity test and wettability analysis were performed to characterize these hybrid beads. The porosity and contact angle of the prepared hybrid beads decreased with an increase in nanoparticle concentration. The effects of various adsorption factors such as adsorbent composition, contact period, pH value and the initial adsorbate concentration were also evaluated to study the performance of these beads for arsenic treatment in contaminated water. FeCh-20, FeCh-40 and FeCh-60 have demonstrated 63%, 81% and 70% removal of arsenic at optimized conditions of pH 7.4 in 10 h, respectively. Higher adsorption of arsenic by FeCh-40 is attributed to its optimal porosity, hydrophilicity and the presence of appropriate nanoparticle contents. The Langmuir adsorption kinetics described the pseudo second order. Thus, the novel beads of FeCh-40 developed in this work are a potent candidate for the treatment of polluted water contaminated with highly toxic arsenic metals.


2020 ◽  
Vol 18 (3) ◽  
pp. 581-588
Author(s):  
Kieu Thi Quynh Hoa ◽  
Nguyen Vu Giang ◽  
Nguyen Thi Yen ◽  
Mai Duc Huynh ◽  
Nguyen Huu Dat ◽  
...  

During the production and transportation of petroleum hydrocarbons, unsuitable operation and leakage may result in contamination of water and soil with petroleum hydrocarbons. Petroleum contamination causes significant marine environmental impacts and presents substantial hazards to human health. Bioremediation of contaminated water and soil is currently the effective and least harmful method of removing petroleum hydrocarbons from the environment. To improve the survival and retention of the bioremediation agents in the contaminated sites, microbial cells must be immobilized. It was demonstrated that immobilized microbial cells present advantages for degrading petroleum hydrocarbon pollutants compared to free suspended cells. In this study, the ability of a Bacillus strain (designed as Bacillus sp. VTVK15) to immobilize on PUF and to degrade crude oil was investigated.  The immobilized Bacilllus strain had the highest number (5.38 ± 0.12 Í 108 CFU/g PUF) and a maximum attachment efficiency of 92% on PUF after 8 days. Analysis by GC-MS revealed that both free and immobilized cells of Bacillus sp. VTVK15 were able to degrade 65 and 90% of the hydrocarbons in 2% (v/v) crude oil tested after 14 days, respectively. The results suggest the potential of using PUF-immobilized Bacillus sp. VTVK15 to bioremediate petroleum hydrocarbons in an open marine environment.


2019 ◽  
Vol 3 (2) ◽  
pp. 40
Author(s):  
Thayna Suane Polheim ◽  
Josiane Teresinha Cardoso ◽  
Viviane Aparecida Spinelli Schein

Conservation units are important for maintaining environmental resources. In this study, the water quality of the Lages Natural Park was evaluated by commonly used indexes: WQI, BMWP' and Shannon Diversity. Water and sediments were collected at seven points inside the CU and at one point outside it. For the evaluation of the WQI, nine parameters were measured: dissolved oxygen and temperature at the site, and the others at the laboratory. For the calculation of the BMWP' and Diversity indexes, the benthic macroinvertebrates in the sediment were identified. The BMWP' and Shannon indexes indicate a worse quality of the waters at the points 1, 2, 6, 7 and 8 (contaminated water and less diversity) than the WQI (quality ranging from good to optimal). The points 3, 4 and 5 had little polluted water according to BMWP' and optimal according to WQI. The results show the contamination of the water inside the park. There is a need for an investigation of its surroundings to determine the sources of contamination. It was also possible to prove the influence the riparian forest exerts in preserving the quality of the water. The difference in the sensitivity of the indexes proves the need to use biological analysis in water monitoring systems.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1407
Author(s):  
Kanfolo Franck Herve YEO ◽  
Chaokun Li ◽  
Hui Zhang ◽  
Jin Chen ◽  
Wendong Wang ◽  
...  

More than 170 million individuals have been influenced by arsenic (As) because of the ingestion of As-polluted groundwater. The presence of As in water bodies, particularly groundwater, has been found to become a widespread issue in the past few decades. Because arsenic causes extreme wellbeing impacts, even at a low concentration in drinking water, the innovations of As removal from contaminated water are of significant importance. Traditional strategies, for example, reverse osmosis, ion exchange, and electro-dialysis are generally utilized for the remediation of As-polluted water; however, the high cost and/or sludge production restricts their application in less-developed areas. The utilization of adsorbents acquired from natural materials has been explored as an alternative for the costly techniques for As removal. This paper aims to review the past and current developments in using naturals adsorbents or modified natural materials for arsenic removal and show the different parameters, which may influence the As removal effectiveness of the natural adsorbent, such as contact time, adsorbent dosage, flow rate, pH, reusability, temperature, and influence of others ions.


2017 ◽  
Vol 2 (1) ◽  
pp. e000088
Author(s):  
Fahim Subhan Chowdhury ◽  
Sojib Bin Zaman ◽  
Shakeel Ahmed Ibne Mahmood

Introduction: Access to drinking water is a fundamental concern for many countries, including Bangladesh. Drinking of unsafe water might result to cause diseases and illness which heightens the economic burden for every one by increasing the treatment costs and work days lost. In Bangladesh, rural households coupled with the lack of safe water, also faces water-contamination with arsenic and other pollutants. Objective: This study explores the status of the rural people in accessing the water for households. It also determines their knowledge regarding the contaminated water. Methodology: The current study used retrospective data from Bangladesh Rural Advancement Committee’s (BRAC) Research and Evaluation Division’s baseline survey which was initiated under the ‘water, sanitation and hygiene’ program. Data was taken from 16,052 households between November 2006 and June 2007. Descriptive statistics were used to report the study findings. Results: Approximately 67% of the households had a permanent water source and majority had their deep tube well. A major proportion of the household respondent (70%) identified the method properly to purify polluted water. About 41% households used tube well as a source of water for daily purposes, i.e., drinking, cooking, washing utensils, and bathing. Majority (85%) of the households were found to pay willingly for a good source of water. Households with the non-governmental organization (NGO) membership were willing to pay even more for the safe water as compared to households without NGO membership. Conclusion: Respondents had considerable knowledge and awareness concerning the contaminated water. The association of NGO membership and level of awareness presented in this study should be of particular interest to the policy makers. Keywords:  Health, Awareness, Knowledge, Rural Bangladesh.


Sign in / Sign up

Export Citation Format

Share Document