scholarly journals Fault sealing and caprock integrity for CO<sub>2</sub> storage: an in-situ injection experiment

Author(s):  
Alba Zappone ◽  
Antonio Pio Rinaldi ◽  
Melchior Grab ◽  
Quinn Wenning ◽  
Clément Roques ◽  
...  

Abstract. The success of geological carbon storage depends on the assurance of a permanent confinement of the injected CO2 in the storage formation at depth. One of the critical elements of the safekeeping of CO2 is the sealing capacity of the caprock overlying the storage formation, despite faults and/or fractures, which may occur in it. In this work, we present an ongoing injection experiment performed in a fault hosted in clay at the Mont Terri underground rock laboratory (NW Switzerland). The experiment aims at improving our understanding on the main physical and chemical mechanisms controlling i) the migration of CO2 through a fault damage zone, ii) the interaction of the CO2 with the neighbouring intact rock, and iii) the impact of the injection on the transmissivity in the fault. To this end, we inject a CO2-saturated saline water in the top of a 3 m think fault in the Opalinus Clay, a clay formation that is a good analogue of common caprock for CO2 storage at depth. The mobility of the CO2 within the fault is studied at decameter scale, by using a comprehensive monitoring system. Our experiment aims to the closing of the knowledge gap between laboratory and reservoir scales. Therefore, an important aspect of the experiment is the decameter scale and the prolonged duration of observations over many months. We collect observations and data from a wide range of monitoring systems, such as a seismic network, pressure temperature and electrical conductivity sensors, fiber optics, extensometers, and an in situ mass spectrometer for dissolved gas monitoring. The observations are complemented by laboratory data on collected fluids and rock samples. Here we show the details of the experimental concept and installed instrumentation, as well as the first results of the preliminary characterization. Analysis of borehole logging allow identifying potential hydraulic transmissive structures within the fault zone. A preliminary analysis of the injection tests helped estimating the transmissivity of such structures within the fault zone, as well as the pressure required to mechanically open such features. The preliminary tests did not record any induced microseismic events. Active seismic tomography enabled a sharp imaging the fault zone.

Solid Earth ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 319-343
Author(s):  
Alba Zappone ◽  
Antonio Pio Rinaldi ◽  
Melchior Grab ◽  
Quinn C. Wenning ◽  
Clément Roques ◽  
...  

Abstract. The success of geological carbon storage depends on the assurance of permanent containment for injected carbon dioxide (CO2) in the storage formation at depth. One of the critical elements of the safekeeping of CO2 is the sealing capacity of the caprock overlying the storage formation despite faults and/or fractures, which may occur in it. In this work, we present an ongoing injection experiment performed in a fault hosted in clay at the Mont Terri underground rock laboratory (NW Switzerland). The experiment aims to improve our understanding of the main physical and chemical mechanisms controlling (i) the migration of CO2 through a fault damage zone, (ii) the interaction of the CO2 with the neighboring intact rock, and (iii) the impact of the injection on the transmissivity in the fault. To this end, we inject CO2-saturated saline water in the top of a 3 m thick fault in the Opalinus Clay, a clay formation that is a good analog of common caprock for CO2 storage at depth. The mobility of the CO2 within the fault is studied at the decameter scale by using a comprehensive monitoring system. Our experiment aims to close the knowledge gap between laboratory and reservoir scales. Therefore, an important aspect of the experiment is the decameter scale and the prolonged duration of observations over many months. We collect observations and data from a wide range of monitoring systems, such as a seismic network, pressure temperature and electrical conductivity sensors, fiber optics, extensometers, and an in situ mass spectrometer for dissolved gas monitoring. The observations are complemented by laboratory data on collected fluids and rock samples. Here we show the details of the experimental concept and installed instrumentation, as well as the first results of the preliminary characterization. An analysis of borehole logging allows for identifying potential hydraulic transmissive structures within the fault zone. A preliminary analysis of the injection tests helped estimate the transmissivity of such structures within the fault zone and the pressure required to mechanically open such features. The preliminary tests did not record any induced microseismic events. Active seismic tomography enabled sharp imaging the fault zone.


2016 ◽  
Vol 67 (1) ◽  
pp. 153 ◽  
Author(s):  
Doriane Stagnol ◽  
Renaud Michel ◽  
Dominique Davoult

Canopy-forming macroalgae create a specific surrounding habitat (the matrix) with their own ecological properties. Previous studies have shown a wide range of responses to canopy removal. Magnitude and strength of the effects of harvesting are thought to be context-dependent, with the macroalgal matrix that can either soften or exacerbate the impact of harvesting. We experimentally examined in situ the effect of harvesting on targeted commercial species, and how these potential impacts might vary in relation to its associated matrix. We found that patterns of recovery following the harvesting disturbance were variable and matrix specific, suggesting that local factors and surrounding habitat characteristics mediated the influence of harvesting. The greatest and longest effects of harvesting were observed for the targeted species that created a dominant and monospecific canopy on their site prior to the disturbance. Another relevant finding was the important natural spatiotemporal variability of macrobenthic assemblages associated with canopy-forming species, which raises concern about the ability to discriminate the natural variability from the disturbance impact. Finally, our results support the need to implement ecosystem-based management, assessing both the habitat conditions and ecological roles of targeted commercial species, in order to insure the sustainability of the resource.


2020 ◽  
Author(s):  
Ali Fallah ◽  
Sungmin O ◽  
Rene Orth

Abstract. Precipitation is a crucial variable for hydro-meteorological applications. Unfortunately, rain gauge measurements are sparse and unevenly distributed, which substantially hampers the use of in-situ precipitation data in many regions of the world. The increasing availability of high-resolution gridded precipitation products presents a valuable alternative, especially over gauge-sparse regions. Nevertheless, uncertainties and corresponding differences across products can limit the applicability of these data. This study examines the usefulness of current state-of-the-art precipitation datasets in hydrological modelling. For this purpose, we force a conceptual hydrological model with multiple precipitation datasets in > 200 European catchments. We consider a wide range of precipitation products, which are generated via (1) interpolation of gauge measurements (E-OBS and GPCC V.2018), (2) combination of multiple sources (MSWEP V2) and (3) data assimilation into reanalysis models (ERA-Interim, ERA5, and CFSR). For each catchment, runoff and evapotranspiration simulations are obtained by forcing the model with the various precipitation products. Evaluation is done at the monthly time scale during the period of 1984–2007. We find that simulated runoff values are highly dependent on the accuracy of precipitation inputs, and thus show significant differences between the simulations. By contrast, simulated evapotranspiration is generally much less influenced. The results are further analysed with respect to different hydro-climatic regimes. We find that the impact of precipitation uncertainty on simulated runoff increases towards wetter regions, while the opposite is observed in the case of evapotranspiration. Finally, we perform an indirect performance evaluation of the precipitation datasets by comparing the runoff simulations with streamflow observations. Thereby, E-OBS yields the best agreement, while furthermore ERA5, GPCC V.2018 and MSWEP V2 show good performance. In summary, our findings highlight a climate-dependent propagation of precipitation uncertainty through the water cycle; while runoff is strongly impacted in comparatively wet regions such as Central Europe, there are increasing implications on evapotranspiration towards drier regions.


2021 ◽  
Author(s):  
Irène Aubert ◽  
Juliette Lamarche ◽  
Philippe Leonide

&lt;p&gt;Understanding the impact of fault zones on reservoir trap properties is a major challenge for a variety of geological ressources applications. Fault zones in cohesive rocks are complex structures, composed of 3 components: rock matrix, damage zone fractures and fault core rock. Despite the diversity of existing methods to estimate fault zone permeability/drain properties, up to date none of them integrate simultaneously the 3 components of fracture, fault core and matrix permeability, neither their evolution with time. We present a ternary plot that characterizes the fault zones permeability as well as their drainage properties. The ternary plot aims at (i) characterizing the fault zone permeability between the three vertices of matrix, fractures and fault core permeability ; and at (ii) defining the drain properties among 4 possible hydraulic system: (I) good horizontal and vertical, fault-perpendicular and -parallel; (II) moderate parallel fluid pathway; (III) good parallel fault-core and (IV) good parallel fractures. The ternary plot method is valid for 3 and 2 components fault zones. The application to the Castellas Fault case study show the simplicity and efficiency of the plot for studying underground and/or fossil, simple or polyphase faults in reservoirs with complete or limited permeability data.&lt;/p&gt;


2020 ◽  
Author(s):  
Adrià Ramos ◽  
José F. Mediato ◽  
Raúl Pérez-López ◽  
Miguel A. Rodríguez-Pascua ◽  
Roberto Martínez-Orío ◽  
...  

&lt;p&gt;The long-term managing from the geological hazard point of view of the Hontom&amp;#237;n onshore pilot-plant for CO&lt;sub&gt;2 &lt;/sub&gt;storage, located in Spain and recognized as the first and only key-test facility in Europe, is one of the main objectives stated in the ENOS European project. This project is led and funded by the European Network of Excellence on the Geological Storage of CO&lt;sub&gt;2&lt;/sub&gt; (CO&lt;sub&gt;2&lt;/sub&gt;GeoNet).&lt;/p&gt;&lt;p&gt;The complex geological emplacement of the Hontom&amp;#237;n Carbon capture and storage plant is considered rather relevant to analyse the impact of fracturing and both local and regional strain field on the reservoir parameters. The reservoir of Hontom&amp;#237;n pilot-plant is formed by highly fractured Middle Jurassic dolomites with associated secondary porosity. This parameter is one of the main concerns when managing CO&lt;sub&gt;2&lt;/sub&gt; storage and monitoring.&lt;/p&gt;&lt;p&gt;In order to characterize the fracture pattern and its implications on a proper CO&lt;sub&gt;2&lt;/sub&gt; monitoring, we characterized the surface structural elements through the study area and their relationship with fractures affecting the reservoir porosity. The methodology followed in this work is mainly based on detailed geological mapping (field work complimented with orthophoto analysis), adding missing information from previous works. This analysis does not increase the cost for long-term monitoring, given that they are low-cost and the results are acquired in a few months.&lt;/p&gt;&lt;p&gt;The main structural trend in the study area, concerning faults with a wide range of displacement and metric to decametric folds, follows a regional E-W orientation. On the other hand, fractures show two main sets of trends, from NW-SE to NE-SW.&lt;/p&gt;&lt;p&gt;This fracturing pattern, considered as a conjugate fracture system, corresponds to the tectonic stress recorded in both Mesozoic and Cenozoic sedimentary successions where the Hontom&amp;#237;n pilot-plant is placed. Riddle faults formed from a nearby regional right-lateral strike slip fault (Ubierna Fault) are the responsible structures for the fracture system affecting the area and the reservoir. Moreover, this fracturing pattern is in agreement with local to regional active tectonic field from Cenozoic times to present-day, when the Ubierna Fault recorded its maximum right-lateral displacement (15 km).&lt;/p&gt;&lt;p&gt;Secondary porosity within the reservoir can be produced from this fracture pattern, highly increasing the permeable migration paths for CO&lt;sub&gt;2&lt;/sub&gt; migration after the injection. Therefore, we state that a combination between fracture analysis and structural and tectonic study, should be considered as mandatory in the monitoring phases of the CO&lt;sub&gt;2&lt;/sub&gt; plume, during and after injection operations.&lt;/p&gt;


2018 ◽  
Author(s):  
Steven J. Granger ◽  
Juan A. Qunicke ◽  
Paul Harris ◽  
Adrian L. Collins ◽  
Martin S. Blackwell

Abstract. The long-term collection of water samples for water quality analysis with high precision laboratory instrumentation is routine in monitoring programmes however, such sampling is labour intensive, expensive, and therefore undertaken at a low temporal frequency. Advances in environmental monitoring technology however, mean that it is now possible to collect high temporal frequency measurements for a wide range of water quality parameters without the need for the physical collection of a sample. The downside to this approach is that the data can be subject to more noise, due to environmental and instrument variables. This raises the question of whether high frequency, lower precision data are better than low frequency, higher precision data. This study reports the findings of an investigation of agricultural land drainage comparing measurements of total phosphorus (TP), total reactive phosphorus (TRP), ammonium (NH4-N) and total oxidised inorganic nitrogen (NOx-N) collected using both equipment in situ and concurrent water samples analysed in the laboratory. Results show that both in situ PHOSPHAX TP and NITRATAX NOx-N instruments can provide comparable data to that measured using samples analysed in the laboratory; however, at high discharge and low NOx-N concentrations, the NITRATAX can under report the concentration. In contrast, PHOSPHAX TRP and YSI sonde NH4-N data were both found to be incomparable to the laboratory data. This was because concentrations of both parameters were well below the instruments accurately determinable level, and because the laboratory data at low concentrations were noisy.


2021 ◽  
Vol 30 (1) ◽  
Author(s):  
Tuan Minh Tran ◽  
Quang Huy Nguyen

In recent years, experimental and numerical researches on the effect of blasting pressure on the stability of existing tunnels was widely obtained. However, the effect of the blasting pressure during excavation a new tunnel or expansion old tunnels on an existing tunnel has disadvantages and still unclear. Some researches were carried out to study the relationship of the observed Peak Particle Velocity (PPV) on the lining areas along the existing tunnel direction, due to either the lack of in situ test data or the difficulty in conducting field tests, particularly for tunnels that are usually old and vulnerable after several decades of service. This paper introduces using numerical methods with the field data investigations on the effect of the blasting in a new tunnel on the surrounding rock mass and on the existing tunnel. The research results show that not only predicting the tunnel lining damage zone under the impact of blast loads but also determination peak maximum of explosion at the same time at the surface of tunnel working.


2021 ◽  
Author(s):  
Florin Tatui ◽  
Georgiana Anghelin ◽  
Sorin Constantin

&lt;p&gt;Shoreline, as the interface between the upper shoreface and the beach-dune system, is sensitive to all changes from both the underwater and sub-aerial parts of the beach at a wide range of temporal scales (seconds to decades), making it a good indicator for coastal health. While more traditional techniques of shoreline monitoring present some shortcomings (low temporal resolution for photointerpretation, reduced spatial extension for video-based techniques, high costs for DGPS in-situ data acquisition), freely available satellite images can provide information for large areas (tens/hundreds of km) at very good temporal scales (days).&lt;/p&gt;&lt;p&gt;We employed a shoreline detection workflow for the dynamic environment of the Danube Delta coast (Black Sea). We focused on an index-based approach using the Automated Water Extraction Index (AWEI). A fully automated procedure was deployed for data processing and the waterline was estimated at sub-pixel level with an adapted image thresholding technique. For validation purposes, 5 Sentinel-2 and 5 Landsat based results were compared with both in-situ (D)GPS measurements and manually digitized shoreline positions from very high-resolution satellite images (Pleiades &amp;#8211; 0.5 m and Spot 7 &amp;#8211; 1.5 m). The overall accuracy of the methodology, expressed as mean absolute error, was found to be of approximately 7.5 m for Sentinel-2 and 4.7 m for Landsat data, respectively.&lt;/p&gt;&lt;p&gt;More than 200 Landsat (5 and 8) and Sentinel-2 images were processed and the corresponding satellite-derived shorelines between 1990 and 2020 were analysed for the whole Romanian Danube Delta coast (130 km). This high number of shorelines allowed us the discrimination of different patterns of coastline dynamic and behaviour which could not have been possible using usual surveying techniques: the extent of accumulation areas induced by the 2005-2006 historical river floods, the impact of different high-energy storms and the subsequent beach recovery after these events, the alongshore movement of erosional processes in accordance with the dominant direction of longshore sediment transport, multi-annual differences in both erosional and accumulation trends. Moreover, a very important result of our analysis is the zonation of Danube Delta coast based on multi-annual trends of shoreline dynamics at finer alongshore spatial resolution than before. This has significant implications for future studies dealing with different scenarios of Danube Delta response to projected sea level rise and increased storminess.&lt;/p&gt;&lt;p&gt;The presented approach and resulting products offer optimal combination of data availability, accuracy and frequency necessary to meet the monitoring and management needs of the increasing number of stakeholders involved in the coastal zone protection activities.&lt;/p&gt;


2017 ◽  
Vol 17 (14) ◽  
pp. 9019-9033 ◽  
Author(s):  
Thomas G. Bell ◽  
Sebastian Landwehr ◽  
Scott D. Miller ◽  
Warren J. de Bruyn ◽  
Adrian H. Callaghan ◽  
...  

Abstract. Simultaneous air–sea fluxes and concentration differences of dimethylsulfide (DMS) and carbon dioxide (CO2) were measured during a summertime North Atlantic cruise in 2011. This data set reveals significant differences between the gas transfer velocities of these two gases (Δkw) over a range of wind speeds up to 21 m s−1. These differences occur at and above the approximate wind speed threshold when waves begin breaking. Whitecap fraction (a proxy for bubbles) was also measured and has a positive relationship with Δkw, consistent with enhanced bubble-mediated transfer of the less soluble CO2 relative to that of the more soluble DMS. However, the correlation of Δkw with whitecap fraction is no stronger than with wind speed. Models used to estimate bubble-mediated transfer from in situ whitecap fraction underpredict the observations, particularly at intermediate wind speeds. Examining the differences between gas transfer velocities of gases with different solubilities is a useful way to detect the impact of bubble-mediated exchange. More simultaneous gas transfer measurements of different solubility gases across a wide range of oceanic conditions are needed to understand the factors controlling the magnitude and scaling of bubble-mediated gas exchange.


Sign in / Sign up

Export Citation Format

Share Document