scholarly journals Applying artificial snowfall to reduce the melting of the Muz Taw Glacier, Sawir Mountains

2020 ◽  
Vol 14 (8) ◽  
pp. 2597-2606
Author(s):  
Feiteng Wang ◽  
Xiaoying Yue ◽  
Lin Wang ◽  
Huilin Li ◽  
Zhencai Du ◽  
...  

Abstract. The glaciers in the Sawir Mountains, Altai area, have been experiencing a continuing and accelerating ice loss since 1959, although the snowfall is abundant and evenly distributed over the year. As an attempt to reduce their melting, we carried out two artificial snowfall experiments on the Muz Taw Glacier during 19–22 August 2018. We measured the albedo and mass balance at different sites along the glacier before and after the experiments. Two automatic weather stations (AWSs) were set up at the equilibrium line altitude (ELA) of the glacier as the target area and the forefield as the control area to record the precipitation, respectively. A comparison of the two precipitation records from the two AWSs suggests that natural precipitation could account for up to 21 % of the snowfall received by the glacier during the experiments. Because of the snowfalls, the glacier's surface albedo significantly increased in the middle to upper part; the average mass loss during 18–24 August (after the experiments) decreased by between 32 and 41 mm w.e (14 %–17 %) compared to during 12–18 August (before the experiments); and the mass resulting from the snowfall accounted for between 42 % and 54 % of the total melt during 18–24 August. We also propose a mechanism involving artificial snowfall, albedo, and mass balance, and the feedbacks describing the role of snowfall in reducing the melting of the glacier. The current status of the work is primitive as it is a preliminary trial, and the conclusions need more controlling experiments to validate it against larger spatio-temporal scales in future.

2007 ◽  
Vol 46 ◽  
pp. 268-274 ◽  
Author(s):  
Shin Sugiyama ◽  
Andreas Bauder ◽  
Conradin Zahno ◽  
Martin Funk

AbstractTo study the past and future evolution of Rhonegletscher, Switzerland, a flowline model was developed to include valley shape effects more accurately than conventional flowband models. In the model, the ice flux at a gridpoint was computed by a two-dimensional ice-flow model applied to the valley cross-section. The results suggested the underestimation of the accumulation area, which seems to be a general problem of flowline modelling arising from the model’s one-dimensional nature. The corrected mass balance was coupled with the equilibrium-line altitude (ELA) change, which was reconstructed for the period 1878–2003 from temperature and precipitation records, to run the model for the past 125 years. The model satisfactorily reproduced both changes in the terminus position and the total ice volume derived from digital elevation models of the surface obtained by analyses of old maps and aerial photographs. This showed the model’s potential to simulate glacier evolution when an accurate mass balance could be determined. The future evolution of Rhonegletscher was evaluated with three mass-balance conditions: the mean for the period 1994–2003, and the most negative (2003) and positive (1978) mass-balance values for the past 50 years. The model predicted volume changes of –18%, –58% and +38% after 50 years for the three conditions, respectively.


2017 ◽  
Vol 63 (239) ◽  
pp. 523-534 ◽  
Author(s):  
SHENG WANG ◽  
TANDONG YAO ◽  
LIDE TIAN ◽  
JIANCHEN PU

ABSTRACTUsing in-situ measured data from Qiyi Glacier, in combination with meteorological and run-off data from stations, a distributed degree-day model was developed for 631 investigated glaciers in the Beida River catchment to explore glacier mass change and its effect on streamflow. The results showed that the average mass balance was −272 ± 67 mm w.e. a−1, with an ice loss of 3.99 Gt during 1957–2013. Assuming a continuous linear trend, equilibrium line altitude rose by 242 m. Compared with morpho-topographic variables, climatic control is a more important factor affecting glacier change. Mass-balance sensitivity to air temperature was −239 mm w.e.°C−1 a−1, while to precipitation it was +1.1 mm w.e. mm−1 a−1. That is, a 210 mm increase in precipitation would be needed to compensate for the net mass loss induced by an air temperature increase of 1°C. Average annual glacier meltwater runoff was 1.51 × 108 m3 from 1957 to 2013, accounting for 15.2% of surface runoff. The time series of meltwater runoff changed abruptly in 2000, and its contribution to surface runoff increased from 13.9 to 20.4%.


Author(s):  
T. Gulik-Krzywicki ◽  
M.J. Costello

Freeze-etching electron microscopy is currently one of the best methods for studying molecular organization of biological materials. Its application, however, is still limited by our imprecise knowledge about the perturbations of the original organization which may occur during quenching and fracturing of the samples and during the replication of fractured surfaces. Although it is well known that the preservation of the molecular organization of biological materials is critically dependent on the rate of freezing of the samples, little information is presently available concerning the nature and the extent of freezing-rate dependent perturbations of the original organizations. In order to obtain this information, we have developed a method based on the comparison of x-ray diffraction patterns of samples before and after freezing, prior to fracturing and replication.Our experimental set-up is shown in Fig. 1. The sample to be quenched is placed on its holder which is then mounted on a small metal holder (O) fixed on a glass capillary (p), whose position is controlled by a micromanipulator.


1992 ◽  
Vol 16 ◽  
pp. 173-179
Author(s):  
M.B. Dyurgerov ◽  
M.G. Kunakhovitch ◽  
V.N. Mikhalenko ◽  
A. M. Sokalskaya ◽  
V. A. Kuzmichenok

The total area of glacierization of the Tien Shan in the boundary area of the USSR is about 8000 km2. The computation of mass balance was determined for this area in 12 river basins.In computation procedure, the vertical profile of snow accumulation in these regions and exponential dependence of variation of ablation with altitude are used. Thus the mass balance in each basin, bn, was calculated on the basis of these curves and represented in its relation with the equilibrium line altitude (ELA). It is shown that the relation ELA = f(bn) is linear when the range of bn values is close to zero, and in all altitude intervals this relation can be described by hypsographic curves, in all basins bn positive up to an ELA elevation of 3450 to 3500 m a.s.l. For average annual altitude of ELA, bn is negative for all regions. So the glaciers of these mountains add about 4 km3 of water to the total annual runoff.


Author(s):  
Hongying Shan ◽  
Chuang Wang ◽  
Cungang Zou ◽  
Mengyao Qin

This paper is a study of the dynamic path planning problem of the pull-type multiple Automated Guided Vehicle (multi-AGV) complex system. First, based on research status at home and abroad, the conflict types, common planning algorithms, and task scheduling methods of different AGV complex systems are compared and analyzed. After comparing the different algorithms, the Dijkstra algorithm was selected as the path planning algorithm. Secondly, a mathematical model is set up for the shortest path of the total driving path, and a general algorithm for multi-AGV collision-free path planning based on a time window is proposed. After a thorough study of the shortcomings of traditional single-car planning and conflict resolution algorithms, a time window improvement algorithm for the planning path and the solution of the path conflict covariance is established. Experiments on VC++ software showed that the improved algorithm reduces the time of path planning and improves the punctual delivery rate of tasks. Finally, the algorithm is applied to material distribution in the OSIS workshop of a C enterprise company. It can be determined that the method is feasible in the actual production and has a certain application value by the improvement of the data before and after the comparison.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 319
Author(s):  
Zhiguo Lu ◽  
Chuanyu Du ◽  
Qingcai Chen ◽  
Tianying Niu ◽  
Na Wang ◽  
...  

The friction and wear characteristics of spike-tooth material (65Mn steel) of Spike-Tooth Harrow in a two-stage peanut harvester were studied in this paper. The friction and wear tests of pin and disc on 65 manganese steel were carried out on the tribometer, then the wear loss and the friction coefficient were studied. The wear loss of the pin was acquired by calculating the mass of the pin before and after the experiment using an electronic balance. According to the actual working environment of peanut spring-finger, four variable parameters are set up: load, speed, soil moisture and soil type. The friction and wear characteristics of pins were studied under different loads, speeds and different soil environments. After wearing, the worn surface of the material was observed by scanning microscope and the wear mechanism was studied. The experimental results show that the wear of the pin increases with the increase of load and decreases with the increase of rotational speed in the same rotation number. Especially in the case of the sandy soil with 20% in moisture, a maximum wear loss of the pin is achieved.


Landslides ◽  
2021 ◽  
Author(s):  
Lorenzo Brezzi ◽  
Alberto Bisson ◽  
Davide Pasa ◽  
Simonetta Cola

AbstractA large number of landslides occur in North-Eastern Italy during every rainy period due to the particular hydrogeological conditions of this area. Even if there are no casualties, the economic losses are often significant, and municipalities frequently do not have sufficient financial resources to repair the damage and stabilize all the unstable slopes. In this regard, the research for more economically sustainable solutions is a crucial challenge. Floating composite anchors are an innovative and low-cost technique set up for slope stabilization: it consists in the use of passive sub-horizontal reinforcements, obtained by coupling a traditional self-drilling bar with some tendons cemented inside it. This work concerns the application of this technique according to the observational method described within the Italian and European technical codes and mainly recommended for the design of geotechnical works, especially when performed in highly uncertain site conditions. The observational method prescribes designing an intervention and, at the same time, using a monitoring system in order to correct and adapt the project during realization of the works on the basis of new data acquired while on site. The case study is the landslide of Cischele, a medium landslide which occurred in 2010 after an exceptional heavy rainy period. In 2015, some floating composite anchors were installed to slow down the movement, even if, due to a limited budget, they were not enough to ensure the complete stabilization of the slope. Thanks to a monitoring system installed in the meantime, it is now possible to have a comparison between the site conditions before and after the intervention. This allows the evaluation of benefits achieved with the reinforcements and, at the same time, the assessment of additional improvements. Two stabilization scenarios are studied through an FE model: the first includes the stabilization system built in 2015, while the second evaluates a new solution proposed to further increase the slope stability.


2021 ◽  
Vol 9 (5) ◽  
pp. 467
Author(s):  
Mostafa Farrag ◽  
Gerald Corzo Perez ◽  
Dimitri Solomatine

Many grid-based spatial hydrological models suffer from the complexity of setting up a coherent spatial structure to calibrate such a complex, highly parameterized system. There are essential aspects of model-building to be taken into account: spatial resolution, the routing equation limitations, and calibration of spatial parameters, and their influence on modeling results, all are decisions that are often made without adequate analysis. In this research, an experimental analysis of grid discretization level, an analysis of processes integration, and the routing concepts are analyzed. The HBV-96 model is set up for each cell, and later on, cells are integrated into an interlinked modeling system (Hapi). The Jiboa River Basin in El Salvador is used as a case study. The first concept tested is the model structure temporal responses, which are highly linked to the runoff dynamics. By changing the runoff generation model description, we explore the responses to events. Two routing models are considered: Muskingum, which routes the runoff from each cell following the river network, and Maxbas, which routes the runoff directly to the outlet. The second concept is the spatial representation, where the model is built and tested for different spatial resolutions (500 m, 1 km, 2 km, and 4 km). The results show that the spatial sensitivity of the resolution is highly linked to the routing method, and it was found that routing sensitivity influenced the model performance more than the spatial discretization, and allowing for coarser discretization makes the model simpler and computationally faster. Slight performance improvement is gained by using different parameters’ values for each cell. It was found that the 2 km cell size corresponds to the least model error values. The proposed hydrological modeling codes have been published as open-source.


2021 ◽  
pp. 001458582110225
Author(s):  
Thomas E Peterson

A central question facing the reader of the Paradiso terrestre (Pg 28–33) concerns the selfhood of the protagonist, the character Dante. While the state of Dante’s soul was critical to the poem’s beginning in the dark wood, and remained implicit through the intervening cantos, it is only in the Paradiso terrestre that it becomes the poem’s central focus. This question is explored in cognitive and theological terms in a sequential reading of the six cantos that elucidates the learning process occurring in the character before and after his confession in Pg 31: in his encounter with Matelda, his sensory and perceptual experience of the procession, his dialogues with Beatrice, and his witnessing of her divine beauty as the analogia entis reflecting the beauty of God. The analysis acknowledges the changes in Dante’s style in this interval, which serves as a fulcrum of the entire Commedia, a spatio-temporal threshold in which the transition of one soul, from confession to redemption to instruction on the divine word, is linked to the destiny of humankind and the prospect of universal salvation. Throughout this process of becoming, the character’s cognitive limitations are exposed, not simply as flaws but as signs of his intrinsic humanity.


2019 ◽  
Vol 152 (Supplement_1) ◽  
pp. S131-S132
Author(s):  
Kathryn Hogan ◽  
Beena Umar ◽  
Mohamed Alhamar ◽  
Kathleen Callahan ◽  
Linoj Samuel

Abstract Objectives There are few papers that characterize types of errors in microbiology laboratories and scant research demonstrating the effects of interventions on microbiology lab errors. This study aims to categorize types of culture reporting errors found in microbiology labs and to document the error rates before and after interventions designed to reduce errors and improve overall laboratory quality. Methods To improve documentation of error incidence, a self-reporting system was changed to an automatic reporting system. Errors were categorized into five types Gram stain (misinterpretations), identification (incorrect analysis), set up labeling (incorrect patient labels), procedures (not followed), and miscellaneous. Error rates were tracked according to technologist, and technologists were given real-time feedback by a manager. Error rates were also monitored in the daily quality meeting and frequently detected errors were discussed at staff meetings. Technologists attended a year-end review with a manager to improve their performance. To maintain these changes, policies were developed to monitor technologist error rate and to define corrective measures. If a certain number of errors per month was reached, technologists were required to undergo retraining by a manager. If a technologist failed to correct any error according to protocol, they were also potentially subject to corrective measures. Results In 2013, we recorded 0.5 errors per 1,000 tests. By 2018, we recorded only 0.1 errors per 1,000 tests, an 80% decrease. The yearly culture volume from 2013 to 2018 increased by 32%, while the yearly error rate went from 0.05% per year to 0.01% per year, a statistically significant decrease (P = .0007). Conclusion This study supports the effectiveness of the changes implemented to decrease errors in culture reporting. By tracking errors in real time and using a standardized process that involved timely follow-up, technologists were educated on error prevention. This practice increased safety awareness in our micro lab.


Sign in / Sign up

Export Citation Format

Share Document