scholarly journals Proximity Utilizing Biotinylation of Nuclear Proteins in vivo

2015 ◽  
Vol 3 ◽  
Author(s):  
Arman Kulyyassov ◽  
Gulsamal Zhubanova ◽  
Erlan Ramanculov ◽  
Vasily Ogryzko

Introduction. The human genome consists of roughly 30,000 genes coding for over 500,000 different proteins, of which more than 10,000 proteins can be produced by the cell at any given time (the cellular “proteome”). It has been estimated that over 80% of proteins do not operate alone, but in complexes. These protein-protein interactions (PPI) are regulated by several mechanisms. For example, post-translational modifications (methylation, acetylation, phosphorylation, or ubiquitination) or metal-binding can lead to conformational changes that alter the affinity and kinetic parameters of the interaction. Many PPIs are part of larger cellular networks of interactions or interactomes. Indeed, these interactions are at the core of the entire interactomics system of any living cell, and so, aberrant PPIs are the basis of multiple diseases, such as neurodegenerative diseases and cancer. The objective of this study was to develop a method of monitoring protein-protein interactions and proximity dependence in vivo.Methods. The biotin ligase BirA was fused to the protein of interest, and the Biotin Acceptor Peptide (BAP) was fused to an interacting partner to make the detection of its biotinylation possible by western blot or mass spectrometry.Results. Using several experimental systems (BirA.A + BAP.B), we showed that the biotinylation is interaction/proximity dependent. Here, A and B are the next nuclear proteins used in the experiments – 3 paralogues of heterochromatin protein HP1a (CBX5), HP1b (CBX1), HP1g (CBX3), wild type and transcription mutant factor Kap1, translesion DNA polymerase PolH and E3, ubiquitin ligase RAD18, Proliferative Cell Nuclear Antigen (PCNA), ubiquitin Ub, SUMO-2/3, different types and isoforms of histones H2A, H2Az, H3.1, H3.3, CenpA, H2A.BBD, and macroH2A. The variant of this approach is termed PUB-NChIP (Proximity Utilizing Biotinylation with Native Chromatin Immuno-precipitation) and is designed to purify and study the protein composition of chromatin in proximity to the nuclear protein of interest. Using the RAD18 protein as a model, we demonstrated that the RAD18-proximal chromatin is enriched in some H4 acetylated species. Moreover, the RAD18-proximal chromatin containing a replacement histone H2Az has a different pattern of H4 acetylation.Conclusion. Progress in the last decade in cancer drug therapy has led us to the conclusion that the nucleus of eukaryotic cells is an active site for many cellular processes important to the development of cancer. These processes include changes in genetic and epigenetic landscape (e. g. methylation of DNA, modification of histones) and the expression levels of transcription factors, which regulates gene products (e.g. hypoxia-inducible factor 1α (HIF-1α) in chronic anemia, etc.) where protein-protein interactions play important role. Understanding the nature of protein-protein interactions may improve design strategies for small-molecule PPI modulators. PPI assay technologies that closely reflect physiological conditions hold the key to developing specific anti-cancer drugs.  

2020 ◽  
Author(s):  
James Frederich ◽  
Ananya Sengupta ◽  
Josue Liriano ◽  
Ewa A. Bienkiewicz ◽  
Brian G. Miller

Fusicoccin A (FC) is a fungal phytotoxin that stabilizes protein–protein interactions (PPIs) between 14-3-3 adapter proteins and their phosphoprotein interaction partners. In recent years, FC has emerged as an important chemical probe of human 14-3-3 PPIs implicated in cancer and neurological diseases. These previous studies have established the structural requirements for FC-induced stabilization of 14-3-3·client phosphoprotein complexes; however, the effect of different 14-3-3 isoforms on FC activity has not been systematically explored. This is a relevant question for the continued development of FC variants because there are seven distinct isoforms of 14-3-3 in humans. Despite their remarkable sequence and structural similarities, a growing body of experimental evidence supports both tissue-specific expression of 14-3-3 isoforms and isoform-specific functions <i>in vivo</i>. Herein, we report the isoform-specificity profile of FC <i>in vitro</i>using recombinant human 14-3-3 isoforms and a focused library of fluorescein-labeled hexaphosphopeptides mimicking the C-terminal 14-3-3 recognition domains of client phosphoproteins targeted by FC in cell culture. Our results reveal modest isoform preferences for individual client phospholigands and demonstrate that FC differentially stabilizes PPIs involving 14-3-3s. Together, these data provide strong motivation for the development of non-natural FC variants with enhanced selectivity for individual 14-3-3 isoforms.


2021 ◽  
Vol 22 (11) ◽  
pp. 5712
Author(s):  
Michał Tracz ◽  
Ireneusz Górniak ◽  
Andrzej Szczepaniak ◽  
Wojciech Białek

The SPL2 protein is an E3 ubiquitin ligase of unknown function. It is one of only three types of E3 ligases found in the outer membrane of plant chloroplasts. In this study, we show that the cytosolic fragment of SPL2 binds lanthanide ions, as evidenced by fluorescence measurements and circular dichroism spectroscopy. We also report that SPL2 undergoes conformational changes upon binding of both Ca2+ and La3+, as evidenced by its partial unfolding. However, these structural rearrangements do not interfere with SPL2 enzymatic activity, as the protein retains its ability to auto-ubiquitinate in vitro. The possible applications of lanthanide-based probes to identify protein interactions in vivo are also discussed. Taken together, the results of this study reveal that the SPL2 protein contains a lanthanide-binding site, showing for the first time that at least some E3 ubiquitin ligases are also capable of binding lanthanide ions.


Cancers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 159
Author(s):  
Tina Schönberger ◽  
Joachim Fandrey ◽  
Katrin Prost-Fingerle

Hypoxia is a key characteristic of tumor tissue. Cancer cells adapt to low oxygen by activating hypoxia-inducible factors (HIFs), ensuring their survival and continued growth despite this hostile environment. Therefore, the inhibition of HIFs and their target genes is a promising and emerging field of cancer research. Several drug candidates target protein–protein interactions or transcription mechanisms of the HIF pathway in order to interfere with activation of this pathway, which is deregulated in a wide range of solid and liquid cancers. Although some inhibitors are already in clinical trials, open questions remain with respect to their modes of action. New imaging technologies using luminescent and fluorescent methods or nanobodies to complement widely used approaches such as chromatin immunoprecipitation may help to answer some of these questions. In this review, we aim to summarize current inhibitor classes targeting the HIF pathway and to provide an overview of in vitro and in vivo techniques that could improve the understanding of inhibitor mechanisms. Unravelling the distinct principles regarding how inhibitors work is an indispensable step for efficient clinical applications and safety of anticancer compounds.


Author(s):  
Liqing Jia ◽  
Xiaolu Ge ◽  
Chao Du ◽  
Linna Chen ◽  
Yanhong Zhou ◽  
...  

Abstract Background Eukaryotic protein translation elongation factor 1α2 (EEF1A2) is an oncogene that promotes the progression of breast and pancreatic cancer. In this study, we aimed to elucidate the oncogenic function of EEF1A2 in the metastasis of lung adenocarcinoma (LUAD). Methods Immunohistochemistry and western blot were used to study EEF1A2 expression levels in LUAD tissues and cells, respectively. The role of EEF1A2 in LUAD progression were investigated in vitro and in vivo. We identified potential EEF1A2-binding proteins by liquid chromatography-electrospray mass spectrometry (LC-MS)/MS. Protein–protein interactions were determined by immunofluorescence and co-immunoprecipitation (Co-IP). Results In this study, we report that EEF1A2 mediates the epithelial–mesenchymal transformation (EMT), to promote the metastasis of LUAD cells in vitro and in vivo. Moreover, EEF1A2 interacts with HSP90AB1 to increase TGFβ Receptor (TβR)-I, and TβRII expression, followed by enhanced SMAD3 and pSMAD3 expression and nuclear localisation, which promotes the EMT of LUAD cells. Overexpression of EEF1A2 in cancer tissues is associated with poor prognosis and short survival of patients with LUAD. Conclusions These findings underscore the molecular functions of EEF1A2 in LUAD metastasis and indicate that EEF1A2 represents a promising target in the treatment of aggressive LUAD.


2006 ◽  
Vol 4 (1) ◽  
pp. nrs.04021 ◽  
Author(s):  
Kristen L. Koterba ◽  
Brian G. Rowan

Bioluminescent resonance energy transfer (BRET2) is a recently developed technology for the measurement of protein-protein interactions in a live, cell-based system. BRET2 is characterized by the efficient transfer of excited energy between a bioluminescent donor molecule (Renilla luciferase) and a fluorescent acceptor molecule (a mutant of Green Fluorescent Protein (GFP2)). The BRET2 assay offers advantages over fluorescence resonance energy transfer (FRET) because it does not require an external light source thereby eliminating problems of photobleaching and autoflourescence. The absence of contamination by light results in low background that permits detection of very small changes in the BRET2 signal. BRET2 is dependent on the orientation and distance between two fusion proteins and therefore requires extensive preliminary standardization experiments to conclude a positive BRET2 signal independent of variations in protein titrations and arrangement in tertiary structures. Estrogen receptor (ER) signaling is modulated by steroid receptor coactivator 1 (SRC-1). To establish BRET2 in a ligand inducible system we used SRC-1 as the donor moiety and ER as the acceptor moiety. Expression and functionality of the fusion proteins were assessed by transient transfection in HEK-293 cells followed by Western blot analysis and measurement of ER-dependent reporter gene activity. These preliminary determinations are required prior to measuring nuclear receptor protein-protein interactions by BRET2. This article describes in detail the BRET2 methodology for measuring interaction between full-length ER and coregulator proteins in real-time, in an in vivo environment.


2009 ◽  
Vol 284 (24) ◽  
pp. 16369-16376 ◽  
Author(s):  
Xuebo Hu ◽  
Sungkwon Kang ◽  
Xiaoyue Chen ◽  
Charles B. Shoemaker ◽  
Moonsoo M. Jin

A quantitative in vivo method for detecting protein-protein interactions will enhance our understanding of protein interaction networks and facilitate affinity maturation as well as designing new interaction pairs. We have developed a novel platform, dubbed “yeast surface two-hybrid (YS2H),” to enable a quantitative measurement of pairwise protein interactions via the secretory pathway by expressing one protein (bait) anchored to the cell wall and the other (prey) in soluble form. In YS2H, the prey is released either outside of the cells or remains on the cell surface by virtue of its binding to the bait. The strength of their interaction is measured by antibody binding to the epitope tag appended to the prey or direct readout of split green fluorescence protein (GFP) complementation. When two α-helices forming coiled coils were expressed as a pair of prey and bait, the amount of the prey in complex with the bait progressively decreased as the affinity changes from 100 pm to 10 μm. With GFP complementation assay, we were able to discriminate a 6-log difference in binding affinities in the range of 100 pm to 100 μm. The affinity estimated from the level of antibody binding to fusion tags was in good agreement with that measured in solution using a surface plasmon resonance technique. In contrast, the level of GFP complementation linearly increased with the on-rate of coiled coil interactions, likely because of the irreversible nature of GFP reconstitution. Furthermore, we demonstrate the use of YS2H in exploring the nature of antigen recognition by antibodies and activation allostery in integrins and in isolating heavy chain-only antibodies against botulinum neurotoxin.


1994 ◽  
Vol 14 (9) ◽  
pp. 6021-6029
Author(s):  
R Metz ◽  
A J Bannister ◽  
J A Sutherland ◽  
C Hagemeier ◽  
E C O'Rourke ◽  
...  

Transcriptional activation in eukaryotes involves protein-protein interactions between regulatory transcription factors and components of the basal transcription machinery. Here we show that c-Fos, but not a related protein, Fra-1, can bind the TATA-box-binding protein (TBP) both in vitro and in vivo and that c-Fos can also interact with the transcription factor IID complex. High-affinity binding to TBP requires c-Fos activation modules which cooperate to activate transcription. One of these activation modules contains a TBP-binding motif (TBM) which was identified through its homology to TBP-binding viral activators. This motif is required for transcriptional activation, as well as TBP binding. Domain swap experiments indicate that a domain containing the TBM can confer TBP binding on Fra-1 both in vitro and in vivo. In vivo activation experiments indicate that a GAL4-Fos fusion can activate a promoter bearing a GAL4 site linked to a TATA box but that this activity does not occur at high concentrations of GAL4-Fos. This inhibition (squelching) of c-Fos activity is relieved by the presence of excess TBP, indicating that TBP is a direct functional target of c-Fos. Removing the TBM from c-Fos severely abrogates activation of a promoter containing a TATA box but does not affect activation of a promoter driven only by an initiator element. Collectively, these results suggest that c-Fos is able to activate via two distinct mechanisms, only one of which requires contact with TBP. Since TBP binding is not exhibited by Fra-1, TBP-mediated activation may be one characteristic that discriminates the function of Fos-related proteins.


2019 ◽  
Vol 116 (47) ◽  
pp. 23527-23533 ◽  
Author(s):  
Mengyuan Xu ◽  
Janna Kiselar ◽  
Tawna L. Whited ◽  
Wilnelly Hernandez-Sanchez ◽  
Derek J. Taylor

Telomeres cap the ends of linear chromosomes and terminate in a single-stranded DNA (ssDNA) overhang recognized by POT1-TPP1 heterodimers to help regulate telomere length homeostasis. Here hydroxyl radical footprinting coupled with mass spectrometry was employed to probe protein–protein interactions and conformational changes involved in the assembly of telomere ssDNA substrates of differing lengths bound by POT1-TPP1 heterodimers. Our data identified environmental changes surrounding residue histidine 266 of POT1 that were dependent on telomere ssDNA substrate length. We further determined that the chronic lymphocytic leukemia-associated H266L substitution significantly reduced POT1-TPP1 binding to short ssDNA substrates; however, it only moderately impaired the heterodimer binding to long ssDNA substrates containing multiple protein binding sites. Additionally, we identified a telomerase inhibitory role when several native POT1-TPP1 proteins coat physiologically relevant lengths of telomere ssDNA. This POT1-TPP1 complex-mediated inhibition of telomerase is abrogated in the context of the POT1 H266L mutation, which leads to telomere overextension in a malignant cellular environment.


Sign in / Sign up

Export Citation Format

Share Document