Kemungkinan Pemanfaatan Beberapa Jenis Rotan Non Komersial Ditinjau Dari Sifat-Sifat Fisik Mekanik

2020 ◽  
Vol 21 (2) ◽  
pp. 32-36
Author(s):  
Heriad Daud S Alusu ◽  
Eva Nurmarini ◽  
Ita Merni Patulak

This research was conducted to determine the basic properties of rattan which are related to the possibility of its use, which are physical-mechanical properties consisting of moisture content, density, parallel tensile strength and modulus of elasticity. There were 12 species of non-commercial rattan studied, 11 species included in the small diameter rattan category (<18 mm diameter) and 1 species belonging to the large diameter rattan category (> 18 mm diameter), namely Daemonorops korthlasii Blume. Based on the results of the tests carried out, there are three species of non-commercial rattan that have similar or similar basic properties to commercial rattan, namely Calamus conirostris Becc., Korthalsia ferox Becc., and Calamus muricatus Becc.

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1616
Author(s):  
Vincenzo Titone ◽  
Antonio Correnti ◽  
Francesco Paolo La Mantia

This work is focused on the influence of moisture content on the processing and mechanical properties of a biodegradable polyester used for applications in injection molding. The pellets of the biodegradable polyester were exposed under different relative humidity conditions at a constant temperature before being compression molded. The compression-molded specimens were again placed under the above conditions before the mechanical testing. With all these samples, it is possible to determine the effect of moisture content on the processing and mechanical properties separately, as well as the combined effect of moisture content on the mechanical properties. The results obtained showed that the amount of absorbed water—both before processing and before mechanical testing—causes an increase in elongation at break and a slight reduction of the elastic modulus and tensile strength. These changes have been associated with possible hydrolytic degradation during the compression molding process and, in particular, with the plasticizing action of the moisture absorbed by the specimens.


2020 ◽  
Vol 12 (8) ◽  
pp. 3154 ◽  
Author(s):  
Hedelvan Emerson Fardin ◽  
Adriana Goulart dos Santos

This research aimed to investigate the mechanical and physical properties of Roller Compacted Concrete (RCC) used with Recycled Concrete Aggregate (RCA) as a replacement for natural coarse aggregate. The maximum dry density method was adopted to prepare RCC mixtures with 200 kg/m³ of cement content and coarse natural aggregates in the concrete mixture. Four RCC mixtures were produced from different RCA incorporation ratios (0%, 5%, 15%, and 30%). The compaction test, compressive strength, splitting tensile strength, flexural tensile strength, and modulus of elasticity, porosity, density, and water absorption tests were performed to analyze the mechanical and physical properties of the mixtures. One-way Analysis of Variance (ANOVA) was used to identify the influences of RCA on RCC’s mechanical properties. As RCA increased in mixtures, some mechanical properties were observed to decrease, such as modulus of elasticity, but the same was not observed in the splitting tensile strength. All RCCs displayed compressive strength greater than 15.0 MPa at 28 days, splitting tensile strength above 1.9 MPa, flexural tensile strength above 2.9 MPa, and modulus of elasticity above 19.0 GPa. According to Brazilian standards, the RCA added to RCC could be used for base layers.


2014 ◽  
Vol 1025-1026 ◽  
pp. 42-45 ◽  
Author(s):  
Luiz A. Melgaço N. Branco ◽  
Eduardo Chahud ◽  
André Luis Christoforo ◽  
Francisco Antonio Rocco Lahr ◽  
Rosane A.G. Battistelle ◽  
...  

This study aimed, with the aid of analysis of variance (ANOVA), to investigate and quantify the influence of moisture ranging between 12% and over 30% (fiber saturation) on the mechanical properties: strength and modulus of elasticity in compression and in tension parallel to grain; modulus of rupture and modulus of elasticity in static bending; shear strength parallel to grain considering wood species Ipê (Tabebuia sp) and Angelim Araroba (Vataireopsis araroba). Tests were performed according to the assumptions and calculating methods Brazilian standard ABNT NBR 7190, Anexx B, totalizing 400 tests. Results of ANOVA revealed a significant reduction (16% on average) for mechanical properties wood due to the increase in moisture content from 12% to over 30% (fiber saturation). The same behavior also occurred when assembly containing the two species was considered.


2008 ◽  
Vol 1 (2) ◽  
pp. 113-120 ◽  
Author(s):  
A. C. Marques ◽  
J. L. Akasaki ◽  
A. P. M. Trigo ◽  
M. L. Marques

In this work it was evaluated the influence tire rubber addition in mortars in order to replace part of the sand (12% by volume). It was also intended to verify if the tire rubber treatment with NaOH saturated aqueous solution causes interference on the mechanical properties of the mixture. Compressive strength, splitting tensile strength, water absorption, modulus of elasticity, and flow test were made in specimens of 5cmx10cm and the tests were carried out to 7, 28, 56, 90, and 180 days. The results show reduction on mechanical properties values after addition of tire rubber and decrease of the workability. It was also observed that the tire rubber treatment does not cause any alteration on the results compared to the rubber without treatment.


2012 ◽  
pp. 189-198 ◽  
Author(s):  
Jelena Petrovic ◽  
Darko Ljubic ◽  
Marina Stamenovic ◽  
Ivana Dimic ◽  
Slavisa Putic

The significance of composite materials and their applications are mainly due to their good properties. This imposes the need for their recycling, thus extending their lifetime. Once used composite material will be disposed as a waste at the end of it service life. After recycling, this kind of waste can be used as raw materials for the production of same material, which raises their applicability. This indicates a great importance of recycling as a method of the renowal of composite materials. This study represents a contribution to the field of mechanical properties of the recycled composite materials. The tension mechanical properties (tensile strength and modulus of elasticity) of once used and disposed glass-epoxy composite material were compared before and after the recycling. The obtained results from mechanical tests confirmed that the applied recycling method was suitable for glass-epoxy composite materials. In respect to the tensile strength and modulus of elasticity it can be further assessed the possibility of use of recycled glass-epoxy composite materials.


2018 ◽  
Vol 21 (1) ◽  
pp. 147 ◽  
Author(s):  
Sihama I. Salih ◽  
Qahtan A. Hamad ◽  
Safaa N. Abdul Jabbar ◽  
Najat H. Sabit

This work covers mixing of unsaturated polyester (un- polyester) with starch powders as polymer blends and study the effects of irradiation by UV-acceleration on mechanical properties of its. The unsaturated polyester was mixing by starch powders at particle size less than (45 µm) at selected weight fraction of (0, 0.5, 1, 1.5, 2, 2.5 and 3%). These properties involve ultimate tensile strength, modulus of elasticity, elongation percentage, flexural modulus, flexural strength, fracture toughness, impact strength and hardness. The results illustrate decrease in the ultimate tensile strength at and elongation percentage, while increasing modulus of elasticity, with increasing the weight ratio of starch powder to 3 % weight fraction, whereas the maximum value of hardness and flexural, impact properties happened at 1 % weight fraction for types of polymer blends.


2004 ◽  
Vol 17 (01) ◽  
pp. 35-40 ◽  
Author(s):  
G. Hosgood ◽  
S. C. Kerwin ◽  
C. S. Hedlund ◽  
J. B. Metcalf ◽  
M. N. Banwell

SummaryCranial cruciate ligament rupture is a common injury in dogs, for which a variety of surgical techniques have been described. A commonly performed surgical technique is extracapsular stabilization with a lateral fabella-tibial suture (LFS) using large diameter nylon leader line (NLL). Inherent properties of NLL such as memory, low coefficient of friction, and large diameter may compromise knot security. Fluorocarbon (polyvinylidene fluoride; PVDF) has been investigated as a biomaterial for a variety of implants and is available as a high tensile strength fluorocarbon leader line (FCL). For a given tensile strength FCL is one-half the diameter of NLL. This study evaluated the force at failure, elongation, and stiffness of FCL compared to NLL for use as a LFS. The effects of steam and ethylene oxide sterilization on FCL were also evaluated. The results of this study demonstrate similar force at failure and stiffness for FCL when compared to NLL. In addition, the use of FCL may eliminate the elongation under low load observed with NLL. The mechanical properties of FCL loops were not affected by ethylene oxide sterilization. In contrast, steam sterilization caused significant detrimental effects on the mechanical properties of FCL and is not recommended. The reduced diameter and pliable feel of FCL allow for superior handling, formation of a less bulky and potentially more secure knot, and less foreign material in the region of implantation. FCL appears to be a suitable alternative material to NLL for a lateral fabella-tibial suture.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
L. Ramos-Galicia ◽  
L. N. Mendez ◽  
Ana Laura Martínez-Hernández ◽  
A. Espindola-Gonzalez ◽  
I. R. Galindo-Esquivel ◽  
...  

We present an easy and effective way to improve the mechanical properties of an epoxy matrix by reinforcing it with a combination of graphene oxide (GO) and reduced graphene oxide (RGO). These nanocomposites were prepared with different load of nanofillers: 0.1, 0.4, 0.7, 1.0 wt% and a neat epoxy. Ratios of graphene oxide and reduced graphene (GO : RGO) employed were: 0 : 1, 0.25 : 0.75, 0.5 : 0.5, 0.75 : 0.25, and 1 : 0. Results show that with only 0.4 wt% and a ratio 0.2 : 0.75 of GO : RGO, tensile strength and tensile toughness are 52% and 152% higher than neat epoxy while modulus of elasticity was improved~20%. The obtained results suggest that it is possible achieve advantageous properties by combining graphene in oxidized and reduced conditions as it shows a synergic effect by the presence of both nanofillers.


1994 ◽  
Vol 370 ◽  
Author(s):  
Manouchehr Hassanzadeh

AbstractThis study has determined the fracture mechanical properties of 9 types of rock, namely fine-, medium- and coarse-grained granites, gneiss, quartzite, diabase, gabbro, and fine- and coarse-grained limestones. Test results show among other things that quartzite has the highest compressive strength and fracture energy, while diabase has the highest splitting tensile strength and modulus of elasticity. Furthermore, the strength and fracture energy of the interfacial zone between the rocks and 6 different mortars have been determined. The results showed that, in this investigation, the mortar/rock interfaces are in most cases weaker than both mortars and rocks.


1991 ◽  
Vol 6 (9) ◽  
pp. 1919-1925 ◽  
Author(s):  
M.L. Chu ◽  
R.J. Scavuzzo ◽  
T.S. Srivatsan

The problem of ice accretion and accumulation on critical structural components of fixed wing and rotary wing aircraft structures has in recent years engendered much interest. However, the mechanical properties of the accreted impact ices are at present not adequately known and, therefore, analytical modeling of this particular material is not possible. This paper proposes a technique for experimentally determining both the modulus of elasticity and tensile strength of ice. The feasibility and accuracy of the test technique were verified by determining the properties of laboratory grown ice. Results reveal a slight degradation of ice tensile strength with an increase in test temperature. The degradation in ice tensile strength is rationalized on the basis of competing mechanistic effects involving an incipient melting of the ice at the higher test temperature and a concomitant intrinsic variation in microstructural features due to variations in freezing rate. Application of the test technique to impact ices will soon be conducted inside an icing wing tunnel.


Sign in / Sign up

Export Citation Format

Share Document