scholarly journals Analysis of Efficiency upon Enhancing the Fuel Combustion Completeness in the GTU Burners Using Fuel Gas Heating up

Author(s):  
Ahiley Pekov ◽  
◽  
Nikolai Bachev ◽  
Alena Shilova ◽  
Oleg Matyunin ◽  
...  

One main characteristic of the gas turbine unit (GTU) burner is its fuel combustion completeness, which affects directly the efficiency of the power plant along with CO and unburnt hydrocarbons CnHm emissions. The aim of this work was the research on the application of the fuel heating-up as an alternative method for increasing the fuel combustion completeness and controlling the emission of harmful agents. This goal is achieved by obtaining experimental data on the emissions of CO and NOx at different temperatures of the fuel gas supply to the combustion chamber. The most significant result of the work is the experimentally confirmed possibility of increasing the combustion efficiency (decreasing CO) by heating the fuel gas while maintaining constant gas-dynamic characteristics of the chamber. The significance of the results obtained consists in the experimental confirmation of the combustion quality control only by heating the fuel gas without changing the operating and design characteristics of the combustion chamber. The fuel combustion low completeness can cause the burner unstable operation in the form of the unsteady pre-blowout burning combined with the pressure oscillations in the burner. At present, methods for ensuring the increase in stability and completeness of the fuel combustion are related to the air rate and temperature changes at the inlet. However, the use of these methods can be unwanted because of their causing the decrease in the coefficient of efficiency and in the resource of the ‘hot part’ of the gas-turbine facility.

Author(s):  
Walter I. Serbetci

As the second study in a sequence of studies conducted on the optimization of combined cycle plants [Ref. 1], this paper presents the effects of fuel gas heating on plant performance and plant economics for various 1×1×1 configurations. First, the theoretical background is presented to explain the effects of fuel gas heating on combustion turbine efficiency and on the overall efficiency of the combined cycle plant. Then, *CycleDeck-Performance Estimator™ and *GateCycle™ computer codes were used to investigate the impact of fuel gas heating on various 1×1×1 configurations. The configurations studied here are: 1) GE CC107FA with three pressure/reheat HRSG and General Electric PG7241(FA) gas turbine (Fig. 1), 2) GE CC106FA with three pressure/reheat HRSG and General Electric PG6101(FA) gas turbine and, 3) GE CC 107EA with three pressure/non-reheat HRSG with General Electric PG7121(EA) gas turbine. In all calculations, natural gas with high methane percentage is used as a typical fuel gas. Hot water from the outlet of IP economizer is used to heat the fuel gas from its supply temperature of 80 °F (27 °C). Heating the fuel gas to target temperatures of 150 °F, 200 °F, 250° F, 300 °F, 350 °F, 375 °F, 400 °F and 425 °F ( 66, 93, 121, 149, 177, 191, 204 and 218 °C), the combustion turbine power output, the combustion turbine heat rate and the plant power output and the corresponding heat rate are determined for each target fuel temperature. For each configuration, the heat transfer surface required to heat the fuel gas to the given target temperatures are also determined and budgetary price quotes are obtained for the fuel gas heaters. As expected, as the fuel temperature is increased, the overall efficiency (therefore the heat rate) improved, however at the expense of some small power output loss. Factoring in the fuel cost savings, the opportunity cost of the power lost, the cost of the various size performance heaters and the incremental auxiliary power consumption (if any), a cost-benefit analysis is carried out and the economically optimum fuel temperature and the corresponding performance heater size are determined for each 1×1×1 configuration.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wenxiong Xi ◽  
Jian Liu ◽  
Ren Mengfei

The challenge of the powder-fuel ramjet is to improve the mixing effect of powder-fuel with oxidizing agents and combustion efficiency. To improve the mixing and combustion efficiency of the powder-fuel ramjet engine, three configurations in head shapes and three exhaust gas inlet patterns of the engine are designed based on a typical powder-fuel ramjet engine combustion chamber. The effect of the head shapes and exhaust gas inlet patterns is analyzed and compared by the three-dimensional numerical simulation method. A comprehensive model validation is built, and the calculation results of the k-ε standard model are compared with the experimental data. The results show that the cylindrical head forms a recirculation zone at the head of the combustion chamber, which leads to powder deposition in the head region of the chamber. The design with the round head and the coned head reduces the recirculation inside the head region, and the exhaust gas from the fuel gas generator has benefits in powder injection and mixing inside the combustion chamber. The exhaust gas inlet of the inclined six hole type has benefits in the mixing of powder and high temperature exhaust gas because it generates strong flow impingement in the core part of the chamber.


Author(s):  
N. Rasooli ◽  
S. Besharat Shafiei ◽  
H. Khaledi

Whereas Gas Turbines are the most important producers of Propulsion and Power in the world and with attention to the importance of combustion chamber as one of the three basic components of Gas Turbine, various activities in different levels have been done on this component. Because of the environmental limitations and laws related to the pollutants such as NOx and CO, Lean Premixed Combustion Chambers are specially considered in gas turbine industries. This study is part of a Multi-Layer simulation of the whole gas turbine cycle in MPG Company. In this work, the combination of a general 1D code and CFD is used for deriving appropriate performance curves for a 1D and 0D gas turbine design, off-design and dynamic cycle code. This 1D code is a general code which has been developed for different combustion chambers; annular, can-annular, can type and silo type combustion chambers. The purpose of generating this 1D code is the possibility of fast analysis of combustors in different operating conditions and reaching required outputs. This 1D code is a part of a general simulation 1D code for gas turbine and was used for a silo type combustor performance prediction. This code generates required quantities such as pressure loss, exit temperature, liner temperature and mass distribution through the combustion chamber. Mass distribution and pressure loss are analyzed and determined with an electrical analogy. Results derived from 1D code are validated with empirical data available for different combustors. There is appropriate agreement between these experimental and analytical results. Drag coefficients for liner holes are available from experimental data and for burner are calculated as a curve with CFD simulations. What differs this code from other 1D codes for gas turbine combustors is the advantage of using combustion efficiencies evolved from numerical simulation results in different loads. These efficiencies are determined with CFD simulations and are available as maps and inserted into the gas temperature calculation algorithm of 1D code. In other 1D codes in this field, empirical correlations are used for combustion efficiency determination. Combustion efficiency curves for design and off-design conditions in this study are achieved by 2D and 3D simulation of combustion chamber with application of EBU/Finite Rate model and 8 step reactions of CH4 burning. Diffusion flame in low loads and premixed flame in high loads are considered. Flame stability and Lean Blow Out charts are evolved from CFD simulation and Heat transfer is applied with empirical correlations.


Author(s):  
Christopher J. Mordaunt ◽  
Seong-Young Lee ◽  
Vickey B. Kalaskar ◽  
Amy Mensch ◽  
Robert J. Santoro ◽  
...  

Future gas turbine technology may require that liquid fuels play an additional role as a coolant over a wide range of combustion-chamber operating conditions. Additionally, in order to satisfy greater efficiency and performance goals, gas turbine operating temperatures and pressures are steadily increasing. Given the desire to reduce dependence on foreign fuels and that current hydrocarbon fuels, such as JP-8, are prone to thermal or catalytic decomposition at such elevated conditions, there is great interest in utilizing alternatively-derived liquid fuels. The successful development of a versatile, multiple-use fuel must achieve the desired operational characteristics of high combustion efficiency, excellent combustion stability, acceptable pollutant emission levels, and compatibility with current engine seals. Combustion instability represents a critical area of concern for future gas turbine engines that may burn alternative fuels. Combustion instability is characterized by large, unsteady combustion-chamber pressure oscillations which occur at the characteristic frequencies associated with the acoustic modes of the combustor. The occurrence of combustion-driven instabilities is closely tied to the details of the injection and fuel-air mixing processes, the heat release characteristics, and the degree to which heat release rate couples with the acoustics of the combustor. Additionally, the efficiency and emissions characteristics are also largely determined by the fuel injection, atomization, and mixing processes associated with combustion. As fuel properties and composition vary, effects on combustion efficiency and emissions, especially the formation of nitrogen oxides (NOx) and soot, can be expected. Therefore, changes in these processes attributed to differing fuel properties can have a dramatic affect on the combustion characteristics and require careful consideration through a well-coordinated combustion research program. The current study investigates whether a coal-based aviation fuel, JP-900, which has the required thermal stability attributes, also satisfies the engine combustion requirements. Additionally, a Fischer-Tropsch fuel and a volumetric 50/50 blend of JP-8 and the Fischer-Tropsch fuel are studied. Previous studies of coal-based fuels have shown that soot production can be a significant problem due to the higher aromatic content than found in conventional fuels. However, improvements in the fuel refinement processes have helped reduce this problem. Experiments included in this current research effort involve studying the combustion instability patterns, the pollutant emission levels, and sooting propensity of coal-based and Fischer-Tropsch fuels as compared to JP-8. The experimental setup consists of an optically-accessible model gas turbine dump combustor, with provisions for laser extinction measurements, which utilizes a Delavan hollow-cone pressure atomizer for fuel injection.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Serhiy Serbin ◽  
Artem Kozlovskyi ◽  
Kateryna Burunsuz

Abstract The article describes the stability of gaseous fuel combustion in gas turbine low-emission combustion chambers with the plasma-chemical assistance. The mathematical model of unsteady processes in a low-emission combustion chamber with a plasma-chemical stabilizer that takes into consideration the impact of low-temperature plasma on aerodynamics flow in a combustion chamber and the characteristics of heat release is developed. A methodology of a numerical experiment concerning the stability of gaseous fuel combustion in a combustion chamber with plasma assistance using computational fluid dynamics, which enhances the efficiency of designing and adjustment, is proposed. Practical recommendations for improvement of stability of a gas turbine combustion chamber with partially premixed lean fuel–air mixtures, working on gaseous fuels, are developed. They allow to reduce pressure fluctuations inside the flame tube by 10–35%, to decrease spectral power of static pressure in the flame tube in 1.5–2.0 times, to reduce nitrogen oxide emission up to 33.6 ppm in the exit section while retaining a carbon monoxide emission level, that corresponds modern international ecological standards.


Author(s):  
Alena Shilova ◽  
◽  
Nikolai Bachev ◽  
Oleg Matyunin ◽  
◽  
...  

When developing micro-gas turbine power plants, it is necessary to have universal two-zone combustion chambers for utilizing petroleum gases of different composition and heat output at different oil deposits. In the combustion zone, the excess air ratio is selected from the interval between the lower and upper concentration limits of combustion. In the dilution zone by supplying secondary air, the working fluid with specified parameters is prepared for supply to the turbine. The excess air coefficient at the exit from the combustion chamber is determined from the energy balance equation and depends on the air and fuel gas parameters at the entrance to the combustion chamber and on the temperature of the working fluid at the entrance to the turbine. The purpose of this work is to develop recommendations for creating a universal combustion chamber for combustion of fuel gases of different composition and heat output. This goal is achieved by selecting the diameter of the chamber in order to ensure the required ratios between the average flow rate of the combustible air mixture and the rate of turbulent combustion, at which a stable position of the flame front is observed. The most noticeable result of the research conducted is substantiation of the possibility of using a universal combustion chamber with constant dimensions in utilization gas turbine installations designed for burning nonstandard fuel gases with ballasting components content up to 70%, which will reduce the time and cost of development and implementation of these installations.


Author(s):  
Douglas R. Constant ◽  
D. Mark Bevan ◽  
Michael F. Cannon ◽  
Gregory J. Kelsall

Advanced coal based power generation systems, such as the Air Blown Gasification Cycle (ABGC), offer the potential for high efficiency, electricity generation with minimum environmental impact. An important component of the ABGC development is the gas turbine combustion system. It must bum low calorific value (LCV) coal derived fuel gas, at high turbine inlet temperatures with minimum pollutant emissions. A phased development programme has been completed burning LCV fuel gas (3.6–4.1 MJ/m3) with low emissions, particularly NOx derived from fuel bound nitrogen. Performance tests were carried out on a generic tubo-annular, prototype combustor, at Mach numbers generally lower than those typical to engine applications, with encouraging results. Five design variants, operating at conditions selected to represent a particular medium sized industrial gas turbine each returned an improvement in combustor performance. A further five variants were investigated to establish which design characteristics and operating parameters most affected NOx emissions.


Author(s):  
Digvijay B. Kulshreshtha ◽  
S. A. Channiwala

The development of the combustion chamber for 20kW gas turbine unit using kerosene type fuel has been undertaken keeping in view the basic requirements of a good combustion chamber, namely, high combustion efficiency, low pressure loss, smooth ignition, wide stability limits, size and shape compatible with engine envelop, low emissions of smoke, unburned fuel and gaseous pollutant species, durability and ease of maintenance. A sophisticated experimental test rig has then been developed to investigate over a wide range of air/fuel ratios for the temperature profiles at the few axial and liner wall locations of this combustion chamber. The range of overall air/fuel ratios considered varies from 22.7396 to 152.4 i.e. Rich Air/Fuel Mixture to Lean Air/Fuel Mixture Range. The temperature profiles for centerline and liner wall for eight different air/fuel ratios are summarized here. The two air/fuel ratios selected are near the designed value of 118.34. It could be concluded from the results that the air/fuel ratio of 122.106 gives the best results for centerline temperature and the liner wall temperature as well as the exit temperature profile. This is very near to the designed air/fuel ratio of 118.34. The temperatures of near 1400 °C achieved at the centerline of the combustion chamber and the liner wall temperatures in the range of 500 °C for lower air/fuel ratio and 300 °C for higher air/fuel ratio certainly ensures safe and reliable operation of this combustion chamber.


Sign in / Sign up

Export Citation Format

Share Document