scholarly journals Assessment of the amount of inputted energy and discharged greenhouse gasses from wheat cultivation in Ardabil province of Iran

2021 ◽  
Vol 1 (3) ◽  
pp. 20-28

Abstract: preventing greenhouse gasses discharge and proper environment maintenance is crucial for human race. For a sustained agricultural development, managing energy consumption and greenhouse gasses discharge (GHG) is important in all agricultural agroecosystem. This study aims to compare wheat cultivation in irrigated and dryland wheat production using energy usage-based greenhouse gas discharge in diverse climatic areas. Throughout 2019, a face-to-face questionary was used to obtain data from wheat cultivators. The total energy usage according to gathered data are 14975 and 54963.9 MJ ha−1 for dryland and irrigated wheat production. In dryland wheat production, energy consumption efficiency was 16% higher compared to energy consumption efficiency of irrigated wheat production. The total amount of GHG for dryland wheat production was 370.5 kg CO2-eq t−1 and 520.62 kg CO2-eq ha−1 and for irrigated wheat production, total GHG was 620.8 kg CO2-eq t−1 and 2986.71 kg CO2-eq ha−1. The order of GHG from low to high in dryland wheat production was chemical fertilizers, machinery, and diesel fuels. In order to reduce the GHG and its environmental effect, efficient energy consumption is vital in wheat production.

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4209
Author(s):  
Rita Remeikienė ◽  
Ligita Gasparėnienė ◽  
Aleksandra Fedajev ◽  
Marek Szarucki ◽  
Marija Đekić ◽  
...  

The main goal of setting energy efficiency priorities is to find ways to reduce energy consumption without harming consumers and the environment. The renovation of buildings can be considered one of the main aspects of energy efficiency in the European Union (EU). In the EU, only 5% of the renovation projects have been able to yield energy-saving at the deep renovation level. No other study has thus far ranked the EU member states according to achieved results in terms of increased usage in renewable sources, a decrease in energy usage and import, and reduction in harmful gas emissions due to energy usage. The main purpose of this article is to perform a comparative analysis of EU economies according to selected indicators related to the usage of renewable resources, energy efficiency, and emissions of harmful gasses as a result of energy usage. The methodological contribution of our study is related to developing a complex and robust research method for investment efficiency assessment allowing the study of three groups of indicators related to the usage of renewable energy sources, energy efficiency, and ecological aspects of energy. It was based on the PROMETHEE II method and allows testing it in other time periods, as well as modifying it for research purposes. The EU member states were categorized by such criteria as energy from renewables and biofuels, final energy consumption from renewables and biofuels, gross electricity generation from renewables and biofuels and import dependency, and usage of renewables and biofuels for heating and cooling. The results of energy per unit of Gross Domestic Product (GDP), Greenhouse gasses (GHG) emissions per million inhabitants (ECO2), energy per capita, the share of CO2 emissions from public electricity, and heat production from total CO2 emissions revealed that Latvia, Sweden, Portugal, Croatia, Austria, Lithuania, Romania, Denmark, and Finland are the nine most advanced countries in the area under consideration. In the group of the most advanced countries, energy consumption from renewables and biofuels is higher than the EU average.


2015 ◽  
Vol 105 (05) ◽  
pp. 313-318
Author(s):  
F. Feder ◽  
K. Erlach ◽  
F. Hosak ◽  
H. Lepple

Die wachsende Volatilität im deutschen Energiesektor bietet jenen Unternehmen zukünftig einen Wettbewerbsvorteil, die ihren Energieverbrauch kontinuierlich senken und flexibel anpassen können. Als Werkzeug dafür wurde die Energiewertstrom-Methode um weitere Energieflüsse aus der Gebäude- und Versorgungstechnik sowie um Aspekte der Energieflexibilität erweitert. Dies erlaubt die Gestaltung eines energiekostenoptimalen Wertstroms.   In the light of the increasing volatility in the German energy sector, companies that are able to constantly reduce and control their energy consumption will gain a competitive advantage. Therefore, the Energy Value Stream Method has been extended by adding further energy flows in building technology as well as aspects of flexible energy usage. This enables the design of a value stream that results in low energy consumption and costs.


2016 ◽  
Vol 67 (9) ◽  
pp. 907 ◽  
Author(s):  
A. S. Peake ◽  
K. L. Bell ◽  
P. S. Carberry ◽  
N. Poole ◽  
S. R. Raine

In-crop nitrogen (N) application is used widely in rainfed winter wheat production to reduce lodging risk; however, uncertainty exists as to its ability to reduce lodging risk in subtropical irrigated wheat production without simultaneously reducing yield potential. The objective of this study was therefore to determine whether in-crop N application reduces lodging risk without reducing yield of irrigated spring wheat in a subtropical environment. Irrigated small-plot experiments were conducted to compare the effect of alternative N timing on lodging and yield in two cultivars. Variable N regimes were imposed during the vegetative growth phase, after which additional N was applied to ensure that total season N application was uniform across N-timing treatments. Treatments with low N at sowing had significantly less lodging and were the highest yielding, exhibiting yield increases of up to 0.8 t ha–1 compared to treatments with high N at sowing. Increased leaf area index, biomass and tiller count at the end of the vegetative growth phase were correlated with increased lodging in both cultivars, although the strength of the correlation varied with cultivar and season. We conclude that canopy-management techniques can be used to simultaneously increase yield and decrease lodging in irrigated spring wheat in the subtropics, but require different implementation from techniques used in temperate regions of Australia.


2019 ◽  
pp. 560-570
Author(s):  
Liangxiu Han ◽  
Haşim Altan ◽  
Masa Noguchi

Understanding how occupants manage their energy use in homes and how their behaviour influence household energy consumption in domestic environments has been challenging. There seems to be several major factors contributing towards achieving optimal performance in designing, constructing and maintaining a sustainable home using Building Information Modelling (BIM) based approaches. This study focuses on investigating the relationship between user behaviour and energy consumption through the in-depth analysis of energy usage patterns collected from a selected affordable terraced house in Prestwick, Scotland, as an initial attempt towards the future integration with BIM systems. For the purpose of this feasibility study, indoor temperature, relative humidity and CO2 sensors, as well as a gas-electricity-water utility monitor were installed in the selected home occupied by a working class nuclear household. The study encompasses the analyses of energy usage patterns in their daily life. It is confirmed that domestic energy consumption is affected by the occupants' presence and behaviour. Moreover, this paper discusses a possibility that the energy prediction approach taken in this study could work alongside BIM systems applied for housing suppliers' design decision-making on the delivery of energy efficient homes of the future.


Author(s):  
Erica Fong ◽  
Dickson K.W. Chiu ◽  
Haiyang Hu ◽  
Yi Zhuang ◽  
Hua Hu

Peak electricity demands from huge number of households in a mega-city would cause contention, leading to potential blackout. This paper proposes bi-directional collaboration via a Smart Energy Monitor System (SEMS) between consumers and energy suppliers, exchanging real-time energy usage data with smart meters over the Internet and mobile devices for well-informed decisions and even predictions. The authors further propose the use of an Alert Management System (AMS) to monitor and aggregate critical energy consumption events for this purpose.


2020 ◽  
Vol 34 (14n16) ◽  
pp. 2040123
Author(s):  
Yong-Liang Chen ◽  
Zi-Qiang Qin ◽  
Yao Li ◽  
Hai-Bo Wang ◽  
Sheryar Muhammad ◽  
...  

In high-density data center, energy consumption is increasing dramatically. For reducing the energy consumption, CFD software, Fluent 15.0, is used to simulate the flow and temperature field distribution with [Formula: see text] turbulence model and fluid–solid coupling method. Fans on the back of racks are simplified as walls with a certain pressure jump. Severs are treated as solid heat sources and porous media. Simulation results reveal that the temperature distribution on the back of racks is not uniform when air conditioners are arranged face-to-face, and local high temperature points emerge near the side wall of air conditioners. Factors affecting cooling efficiency, such as location of air conditioners, speed of inlets, distance of racks, etc., need to be improved. Geometric model is optimized by using a diagonal rack arrangement and drilling holes on the side wall. Based on this, four different cases with various hot aisle distance are proposed. Single and double modular data center are both simulated. Results of new model are better than those of baseline model.


1981 ◽  
Vol 44 (1) ◽  
pp. 47-54
Author(s):  
NAN UNKLESBAY

Energy expended to distribute food shipments during a 2-year period to, and within, the United States before their seizure was documented for four distribution modes: ship, truck, train and air. The food shipments were described according to their wholesale value, energy usage per distribution mode, nutrient content, energy/nutrient ratios and violation code(s) of the Food, Drug and Cosmetic Act. Results were used to illustrate how this type of study could be used as an administrative tool to develop strategies for avoiding excessive energy consumption during food distribution. Recommendations were made for collecting further data to facilitate reductions in the amount of energy used to distribute human food. Finally, rather ethical questions were raised about the problem of purchasing protein foods from less-developed countries; using energy to distribute them to the United States when they are subsequently declared unfit for human consumption.


Agriculture ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 517
Author(s):  
Ali Mostafaeipour ◽  
Mohammad Bagher Fakhrzad ◽  
Sajad Gharaat ◽  
Mehdi Jahangiri ◽  
Joshuva Arockia Dhanraj ◽  
...  

The global population growth has led to a considerable rise in demand for wheat. Today, the amount of energy consumption in agriculture has also increased due to the need for sufficient food for the growing population. Thus, agricultural policymakers in most countries rely on prediction models to influence food security policies. This research aims to predict and reduce the amount of energy consumption in wheat production. Data were collected from the farms of Estahban city in Fars province of Iran by the Jihad Agricultural Department’s experts for 20 years from 1994 to 2013. In this study, a novel prediction method based on consumed energy in the production period is proposed. The model is developed based on artificial intelligence to forecast the output energy in wheat production and uses extreme learning machine (ELM) and support vector regression (SVR). In the experimental stage, the value of elevation metrics for the EVM and ELM was reported to be equal to 0.000000409 and 0.9531, respectively. Total input energy (consumed) is found to be 1,460,503.1 Mega Joules (MJ), and output energy (produced wheat) is 1,401,011.945 MJ for the Estahban. The result indicates the superiority of the ELM model to enhance the decisions of the agricultural policymakers.


Sign in / Sign up

Export Citation Format

Share Document