Cryoground Rubber-Natural Rubber Blends

1984 ◽  
Vol 57 (1) ◽  
pp. 19-33 ◽  
Author(s):  
A. A. Phadke ◽  
S. K. Chakraborty ◽  
S. K. De

Abstract Addition of cryoground rubber (CGR) causes changes in curing characteristics (decrease in Mooney scorch time, optimum cure time, and reversion time) and shows a detrimental effect on most of the vulcanizate properties (tensile, resilience, flex, hysteresis, set, and abrasion). Tear strength, however, is not adversely affected by CGR. Higher doses of curatives (sulfur 3.5 phr and acelerator 1.4 phr) and addition of reinforcing carbon black make up the losses in physical properties. Scanning electron microscope fractographs show that there is little adhesion between natural rubber and CGR. But addition of carbon black overshadows the effect of CGR, and the fractographs show the characteristics of black-filled vulcanizates.

2005 ◽  
Vol 70 (5) ◽  
pp. 695-703 ◽  
Author(s):  
Gordana Markovic ◽  
Blaga Radovanovic ◽  
Jaroslava Budinski-Simendic ◽  
Milena Marinovic-Cincovic

The dependence of the Mooney scorch time and cure index on the blend ratio of chlorosulphonated polyethylene/natural rubber (CSM/SMR 20 CV) and chlorosulphonated polyethylene/chlorinated natural rubber (CSM/Pergut S 40) blends were determined in the temperature range from 120 oC to 160 oC using a Monsanto Mooney viscometer. Semi-efficient vulcanization systems were used for the study. The morphology of the fracture surface of the crosslinked systems was determined by Scanning Electron Microscopy (SEM). The results showed that the scorch time decreased with increasing SMR 20 CV and Pergut S 40 contents. This observation is attributed to the increasing solubility of sulfur, as the content of SMR 20 CV and Pergut S 40 in the composition increased. For temperatures greater than 140 oC, the dependence of the scorch time on blend ratios diminishes, as enough thermal energy is available to overcome the activation energy of vulcanization. The differing curing characteristics of the two blends is explained by the compatibility factor of the respective blend. Morphological analysis of the blends shows a very satisfactory agreement.


2016 ◽  
Vol 1133 ◽  
pp. 191-195
Author(s):  
Siti Zuliana Salleh ◽  
Hanafi Ismail ◽  
Zulkifli Ahmad

The loadings effect of carbon black and silanized-silica filled 75/25 phr/phr of natural rubber/recycled chloroprene rubber (NR/rCR) blends were compared with the unfilled NR/rCR blends. Different filler loading between in the range of 10- 40 phr was used. The rubber blends were prepared by using a laboratory two-roll mill and rheometric characteristics were studied using the Monsanto moving die rheometer (MDR 2000) at 150 °C. The addition of CB and silanized-silica showed different trend in scorch and cure time but showed similar trend in torques. The incorporation of both fillers caused higher tensile strength than that unfilled rubber blends. By comparison, the silanized-silica filled NR/rCR blends showed higher tensile strength than CB filled NR/rCR blends. Morphological characterization as observed from SEM justified these results.


2013 ◽  
Vol 858 ◽  
pp. 199-204
Author(s):  
Hoang T.B. Diep ◽  
Hanafi Ismail ◽  
A. Rashid Azura ◽  
Ng. Van Tu ◽  
Tsutomu Takeichi

Wollastonite filled natural rubber (NR) compounds were prepared using a laboratory two-roll mill. The filler was loaded into NR at different loading, i.e., 0, 10, 20, 30 and 40 part per hundred of rubber (phr). The effect of wollastonite on curing characteristic, tensile and morphology properties has been studied. Results indicated that the cure time (t90), scorch time (t2), tensile strength and elongation at break of the NR compounds decrease with increasing wollastonite loading but the maximum torque, tensile modulus M100 (stress at 100% elongation), M300 (stress at 100% elongation) increase with increasing wollastonite loading. The fracture surface morphology of the NR compounds was investigated with a scanning electron microscope (SEM). More filler detachment from NR surface was observed with increasing wollastonite loading.


2010 ◽  
Vol 178 ◽  
pp. 92-96
Author(s):  
Mei Yang ◽  
Sheng Hu ◽  
Shang Yue Shen ◽  
Tie Li

The modified attapulgite / natural rubber composites (MANRC), attapulgite / natural rubber composites (ANRC) and carbon black N330 / natural rubber composites (CBNRC) were prepared by co-coagulating rubber latex and clay aqueous suspension,respectively. The modified attapulgite was attained by dispersion with an ultrasonic cell pulverizer first and then modification with cetyltrimethylammonium bromide (CTAB). The micrographs of field emission scanning electron microscope (FESEM) and environmental scanning electron microscope (ESEM) showed that the CTAB-modified attapulgite have the best dispersibility in the composites. The mechanical properties of MANRC are the best. The best properties of MANRC can be obtained when 20phrCTAB-modified attapulgite was added, the tensile strength, the 200% tensile modulus, the tear strength and Shore A hardness increased by 58.2%, 109.3%, 46.0%, 27.8%, respectively, compared with CBNRC.


2011 ◽  
Vol 471-472 ◽  
pp. 957-962 ◽  
Author(s):  
Siti Zuliana Salleh ◽  
Hanafi Ismail ◽  
Zulkifli Ahmad

In this research, natural rubber (NR) with halloysite nanotubes(HNTs)/carbon black (CB) hybrid filler at various filler loading was investigated where the total filler loading used in each compound were 40 phr. The curing characteristics, fatigue life and morphological properties of HNTs/CB/NR nanocomposites were studied. Laboratory two-roll mill was used for mixing process. The results revealed that vulcanizates containing more HNTs in hybrid filler exhibit longer scorch time (ts2) and cure time (t90) for curing characteristics and higher in fatigue life compared to vulcanizates with 40 phr of CB. The images from scanning electron microscope (SEM) confirmed that replacement of carbon black with halloysite nanotubes improved the fatigue life by showing more tearing surface on vulcanizates.


Author(s):  
P. Sadhukhan ◽  
J. B. Zimmerman

Rubber stocks, specially tires, are composed of natural rubber and synthetic polymers and also of several compounding ingredients, such as carbon black, silica, zinc oxide etc. These are generally mixed and vulcanized with additional curing agents, mainly organic in nature, to achieve certain “designing properties” including wear, traction, rolling resistance and handling of tires. Considerable importance is, therefore, attached both by the manufacturers and their competitors to be able to extract, identify and characterize various types of fillers and pigments. Several analytical procedures have been in use to extract, preferentially, these fillers and pigments and subsequently identify and characterize them under a transmission electron microscope.Rubber stocks and tire sections are subjected to heat under nitrogen atmosphere to 550°C for one hour and then cooled under nitrogen to remove polymers, leaving behind carbon black, silica and zinc oxide and 650°C to eliminate carbon blacks, leaving only silica and zinc oxide.


2013 ◽  
Vol 844 ◽  
pp. 239-242 ◽  
Author(s):  
Supaporn Ieadsang ◽  
Anoma Thitithammawong ◽  
Charoen Nakason ◽  
Azizon Kaesaman

Modified epoxidized palm oil (pA-m-EPO) was prepared by a reaction of epoxidized palm oil (EPO) with n-phenyl-p-phenylenediamine. Chemical structure of the pA-m-EPO was characterized by using FT-IR spectrophotometer. Influence of the pA-m-EPO on bound rubber content, total mixing energy, Mooney viscosity and curing characteristics of carbon black filled natural rubber compound together with mechanical and morphological properties of carbon black filled natural rubber vulcanizates was later studied. Results showed that the NR compound and vulcanizate with using the pA-m-EPO gave inferior properties than those of using the aromatic oil. However, they provided better properties than those of the treated distillate aromatic extract (TDAE) excepting filler dispersion. Furthermore, the pA-m-EPO can be claimed as non-carcinogenic processing oil with low polycyclic aromatic hydrocarbons.


2011 ◽  
Vol 17 (3) ◽  
pp. 315-321 ◽  
Author(s):  
Gordana Markovic ◽  
Vojislav Jovanovic ◽  
Suzana Samarzija-Jovanovic ◽  
Milena Marinovic-Cincovic ◽  
Jaroslava Budinski-Simendic

In this paper the curing and mechanical properties of two series of prepared blends, i.e., chlorosulphonated polyethylene (CSM)/isobutylene-co-isoprene (IIR) rubber blends and chlorosulphonated polyethylene (CSM)/chlorinated isobutylene-co-isoprene (CIIR) rubber blends were carried out. Blends were prepared using a two roll-mill at a temperature of 40-50?C. The curing was assessed by using a Monsanto Oscillating Disc Rheometer R-100. The process of vulcanization accelerated sulfur of pure rubbers and their blends was carried out in an electrically heated laboratory hydraulic press under a pressure of about 4 MPa and 160?. The stress-strain experiments were performed using tensile tester machine (Zwick 1425). Results indicate that the scorch time, ts2 and optimum cure time, tc90 increase with increasing CSM content in both blends. The values of modulus at 100% and at 300% elongation and tensile strength increases with increasing CSM content, whereas elongation at break shows a decreasing trend. The enhancement in mechanical properties was supported by data of crosslink density in these samples obtained from swelling measurement and scanning electron microscopy studies of the rubber blends fractured surfaces.


Sign in / Sign up

Export Citation Format

Share Document