HIGHLY IMPERMEABLE NANOCOMPOSITES OF BROMINATED BUTYL RUBBER WITH MODIFIED MONTMORILLONITE CLAY

2014 ◽  
Vol 87 (4) ◽  
pp. 579-592 ◽  
Author(s):  
Arun Kumar ◽  
Satyam Modi ◽  
Artee Panwar ◽  
Daniel Schmidt ◽  
Carol M. F. Barry ◽  
...  

ABSTRACT Incorporation of nanoclays in vulcanized rubber can enhance the barrier and mechanical properties, with the aid of intercalation, exfoliation, or both. Achieving a high degree of dispersion such as intercalation and exfoliation is critical for obtaining optimal properties. In this work, a stepwise approach was developed to disperse the natural montmorillonite (MMT) clay modified with a quaternary ammonium salt in brominated butyl rubber (BIIR). The solvent intercalation method followed by mechanical shear was used to effectively intercalate/exfoliate the MMT bundles. Special consideration was given to effectively remove the solvent from the solvent intercalated master batch. The nanocomposites fabricated using this technique showed a high degree of intercalation and exfoliation along with improved barrier, dynamic mechanical, and mechanical properties. This improvement in properties offers an opportunity for this material to be used in high-end applications requiring improved mechanical as well as barrier properties; an example is a thinner tire inner liner with reduced hysteresis, lower running temperatures, and reduced fuel consumption.

RSC Advances ◽  
2017 ◽  
Vol 7 (59) ◽  
pp. 37148-37157 ◽  
Author(s):  
Mengnan Ruan ◽  
Dan Yang ◽  
Wenli Guo ◽  
Shuo Huang ◽  
Yibo Wu ◽  
...  

Barium titanate (BT) particles, BT-KH570 particles, and polar plasticizer tri-n-butyl phosphate (TBP) were added into BIIR matrix to form a dielectric elastomer composite, which had a high dielectric constant, good mechanical properties, and large actuated strain.


2007 ◽  
Vol 80 (2) ◽  
pp. 231-250 ◽  
Author(s):  
P. Threepopnatkul ◽  
D. Murphy ◽  
J. Mead ◽  
W. Zukas

Abstract Breathable butyl rubber non-woven mats have been successfully produced by the electrospinning technique, providing a fibrous membrane with controlled porosity and surface area. These properties are directly related to the barrier properties of the product, including water vapor transmission, air flow resistance, aerosol resistance, and the transportation of chemical vapors. Butyl rubber is also known as a highly chemical resistant elastomer material, which can be used for applications requiring high elongation. The use of carbon black filled elastomers provides the ability to tailor the properties, such as processability, mechanical properties, and barrier properties through proper selection of carbon black type and loading. In this work, the structure and mechanical properties of electrospun butyl rubber non-woven mats were investigated using a series of carbon black types with variation in particle size and structure. Fiber diameter decreased with decreasing particle size and increasing carbon black structure. Mechanical properties can be explained by variation in density and fiber morphology of membranes. Decreasing carbon black particle size and increasing structure decreased the density, and increased tensile strength, ultimate elongation and modulus.


2013 ◽  
Vol 561 ◽  
pp. 218-222
Author(s):  
Lei Guo ◽  
Chuang Sheng Wang ◽  
Qing Kun Liu ◽  
Dong Jian Su

It introduces the structure characteristics of a new-type vacuumizing flat vulcanizing machine. With a high degree of automation, high precision products, high production efficiency and the like; this machine can realize the mold’s automatic push-off, openness, turning, ejection and via the experiment, impacts on physical mechanical properties of vulcanized rubber between new-type vacuumizing flat vulcanizing machine and ordinary vulcanizing machine are conducted.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1109
Author(s):  
Mati Ullah Shah ◽  
Muhammad Usman ◽  
Muhammad Usman Hanif ◽  
Iqra Naseem ◽  
Sara Farooq

The huge amount of solid waste from the brick manufacturing industry can be used as a cement replacement. However, replacement exceeding 10% causes a reduction in strength due to the slowing of the pozzolanic reaction. Therefore, in this study, the pozzolanic potential of brick waste is enhanced using ultrafine brick powder with hydrated lime (HL). A total of six self-compacting paste mixes were studied. HL 2.5% by weight of binder was added in two formulations: 10% and 20% of waste burnt brick powder (WBBP), to activate the pozzolanic reaction. An increase in the water demand and setting time was observed by increasing the replacement percentage of WBBP. It was found that the mechanical properties of mixes containing 5% and 10% WBBP performed better than the control mix, while the mechanical properties of the mixes containing 20% WBBP were found to be almost equal to the control mix at 90 days. The addition of HL enhanced the early-age strength. Furthermore, WBBP formulations endorsed improvements in both durability and rheological properties, complemented by reduced early-age shrinkage. Overall, it was found that brick waste in ultrafine size has a very high degree of pozzolanic potential and can be effectively utilized as a supplementary cementitious material.


e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 433-442
Author(s):  
Hua He ◽  
Rui-jing Jia ◽  
Kai-qiang Dong ◽  
Jia-wen Huang ◽  
Zhi-yong Qin

Abstract A novel biodegradable protein-based material (UMSPIE) that consists of natural polymer soy protein isolate (SPI), ultrasonic-modified montmorillonite (UMMT), and ethylene glycol diglycidyl ether (EGDE) was produced by solution casting. Fourier infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TG), and scanning electron microscopy (SEM) were used to characterize the chemical structure and micro-morphologies of as-synthesized protein-based composite films. The results showed that the interlayer structure of MMT was destroyed by ultrasonic treatment, and the hydrogen bonding between SPI chains and the ultrasound-treated MMT plates was enhanced. The synergistic effect of UMMT and EGDE on SPI molecules made the network structure of the UMSPIE film denser. In addition, the mechanical and barrier properties of the as-synthesized films were explored. Compared with pure soy protein film, the tensile strength of the UMSPIE film has an increase of 266.82% (increasing from 4.4 to 16.14 MPa). From the above, the modified strategy of layered silicates filling combining crosslinking agents is considered as an effective method to improve the functional properties of bio-based polymer composites.


2020 ◽  
Vol 148 ◽  
pp. 316-323
Author(s):  
Fatima-Zahra Semlali Aouragh Hassani ◽  
Khadija El Bourakadi ◽  
Nawal Merghoub ◽  
Abou el kacem Qaiss ◽  
Rachid Bouhfid

Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2588
Author(s):  
Mansuri M. Tosif ◽  
Agnieszka Najda ◽  
Aarti Bains ◽  
Grażyna Zawiślak ◽  
Grzegorz Maj ◽  
...  

In recent years, scientists have focused on research to replace petroleum-based components plastics, in an eco-friendly and cost-effective manner, with plant-derived biopolymers offering suitable mechanical properties. Moreover, due to high environmental pollution, global warming, and the foreseen shortage of oil supplies, the quest for the formulation of biobased, non-toxic, biocompatible, and biodegradable polymer films is still emerging. Several biopolymers from varied natural resources such as starch, cellulose, gums, agar, milk, cereal, and legume proteins have been used as eco-friendly packaging materials for the substitute of non-biodegradable petroleum-based plastic-based packaging materials. Among all biopolymers, starch is an edible carbohydrate complex, composed of a linear polymer, amylose, and amylopectin. They have usually been considered as a favorite choice of material for food packaging applications due to their excellent forming ability, low cost, and environmental compatibility. Although the film prepared from bio-polymer materials improves the shelf life of commodities by protecting them against interior and exterior factors, suitable barrier properties are impossible to attain with single polymeric packaging material. Therefore, the properties of edible films can be modified based on the hydrophobic–hydrophilic qualities of biomolecules. Certain chemical modifications of starch have been performed; however, the chemical residues may impart toxicity in the food commodity. Therefore, in such cases, several plant-derived polymeric combinations could be used as an effective binary blend of the polymer to improve the mechanical and barrier properties of packaging film. Recently, scientists have shown their great interest in underutilized plant-derived mucilage to synthesize biodegradable packaging material with desirable properties. Mucilage has a great potential to produce a stable polymeric network that confines starch granules that delay the release of amylose, improving the mechanical property of films. Therefore, the proposed review article is emphasized on the utilization of a blend of source and plant-derived mucilage for the synthesis of biodegradable packaging film. Herein, the synthesis process, characterization, mechanical properties, functional properties, and application of starch and mucilage-based film are discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document