Synthesis, Characterization of New Polytriazole Derivatives from Polyacryloyl chloride and Theoretical with Corrosion Inhibitor Study for Stainless steel in acidic medium

Author(s):  
Amaal S. Sadiq ◽  
Entesar O. Al-Tamimi

The purpose of the study is to synthesize and characterize a new polytriazole derivative from polyacryloyl chloried, first reaction of polyacryloyl chloride with hydrazine hydrate in the presence of DMF as a solvent to obtained acid hydrazide (1) than reacted with different amide to give poly 1,2,4-triazole derivatives(1a-1c). Newly synthesized compounds were characterized by spectral methods [13C-NMR, 1H-NMR, and FTIR] and calculated some of its physical properties. Also, we worked theoretical study involving calculated the geometric configurations, total energy, dipole moment etc..,. In addition, the inhibition effect of the synthesized compounds (1a-1c) on corrosion of stainless steel in 1M HCl were studied by method of weight loss. The results of weight loss measurements showed that corrosion inhibition efficiency by increasing the concentration of organic inhibitors for stainless steel in 1M HCl solution at 30oC.

Author(s):  
Amaal S. Sadiq ◽  
Entesar O. Al-Tamimi

A new poly chain derivative of polyacrolein has been synthesized from the two basic precursors, polyacrolein and aromatic amine/substituted amine in chloroform to prepare poly Schiff base compounds (A1-A4). The novel poly subs.β-lactam derivative is obtained via coupling of poly schiff base with chloroacetyl chloride and trimethylamine (B1-B4). Newly synthesized compound was identified via spectral methods; their [13C-NMR, 1H-NMR, and FTIR] also measurement of some of its physical properties. Furthermore the inhibition effect of synthesized compounds (B1-B4) on the corrosion of stainless steel in 1N HCl was studied by wight loss method. The results of weight loss measurements showed that corrosion inhibition efficiency by increasing the concentration of organic inhibitors for stainless steel in 1M HCl solution at 30°C.


2018 ◽  
Vol 34 (5) ◽  
pp. 2471-2476 ◽  
Author(s):  
Hamida Edan Salman ◽  
Asim A. Balakit ◽  
Ali Ahmed Abdulridha

A new aromatic Schiff base with azo linkage (AS) has been synthesized and characterized by FT-IR, 1H NMR and 13C NMR spectroscopic techniques. The new compound (AS) has been evaluated as carbon steel corrosion inhibitor at different concentrations (0.005, 0.01, 0.02, 0.04 and 0.08 mM) and different temperatures (303 – 333 K). The corrosion inhibition efficiency was studied by potentiodynamic polarization and weight loss measurements. The effects of concentration and temperature on the inhibition efficiency were studied by potentiodynamic polarization studies, the results showed that increasing concentration of AS increases the inhibition efficiency while increasing the temperature decreases it, the highest corrosion inhibition efficiency, 93.9% was recorded with 0.08 mM of AS at 313 K in 1 M H2SO4. Weight loss measurements showed that the inhibition efficiency reached 97.1% in the presence of AS (0.08 mM) at 313 K. The adsorption process was found to obey Langmuir isotherm, and the adsorption thermodynamic parameters were studied. Scanning electron microscope (SEM) was used to confirm the results.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Saeed Mohammadi ◽  
Fatemeh Baghaei Ravari ◽  
Athareh Dadgarinezhad

An investigation was conducted to improve the corrosion inhibition efficiency of molybdate-based inhibitors for mild steel which is the main construction material of cooling water systems, using nitroethane as an organic compound beside zinc. In this study a new molybdate-based inhibitor was introduced with the composition of 60 ppm molybdate, 20 ppm nitrite, 20 ppm nitroethane, and 10 ppm zinc. Inhibition efficiency of molybdate alone and with nitrite, nitroethane, and zinc on the uniform corrosion of mild steel in stimulated cooling water (SCW) was assessed by electrochemical techniques such as potentiodynamic polarization and electrochemical impedance (AC impedance) measurements. Weight loss measurements were made with coupon testing specimens in the room temperature for 48 h. Studies of electron microscopy, including scanning electron microscopy (SEM) photograph and X-ray energy dispersive spectrometry (EDS) microanalysis, were used. The results obtained from the polarization and AC impedance curves were in agreement with those from the corrosion weight loss results. The results indicate that the new inhibitor is as effective as molybdate alone, though at one-ninth of the concentration range of molybdate, which is economically favorable.


This paper presents the results of an experimental investigation carried out to study the effect of surface applied organic and inorganic corrosion inhibitors on reinforced steel in concrete. The reinforcement bars were coated with Neem powder (organic inhibitor) and Zinc powder (inorganic inhibitor) as corrosion inhibitors. The samples of beams of size 100X100X640mm having 4 steel bars as reinforcement were prepared and cured in normal water for 15 days and in saline environment for 42 days. The inhibitors were applied in the form of 2 coats, 4 coats and blend of both. The grade of concrete used was M30. Half-cell Potential and Weight loss measurements were carried out to determine the efficiency of corrosion inhibitors [11]. The corrosion inhibition efficiency of controlled specimen and coated specimens were compared. From the results it was seen that samples with 4 coats of Neem showed 44% inhibition efficiency as compared to control specimens. Similarly specimens with two coats of Neem, four coats of Neem and Zinc also showed better corrosion inhibition efficiency. Highest weight loss was observed in case of control specimen. The study concludes that use of surface applied corrosion inhibitors prove efficient in enhancing the corrosion inhibition efficiency of concrete. Surface applied corrosion inhibitors provide protective layer to the reinforcement thereby protecting it from corrosion and increasing the durability of the structure. This type of technique of using corrosion inhibitors in concrete can be used in various structures such as buildings, bridges, sewage pipes, marine structures, abutments & piers, RCC roads which are subjected to harsh environmental conditions.


2019 ◽  
Vol 4 (4) ◽  
pp. 4-10
Author(s):  
Oluwatoyin Adenike Olaseinde ◽  
Olajesu F. Olarenwaju ◽  
Silifa T. Mohammed

The research investigated the effect of silver nanoparticles on the corrosion behaviour of Mild steel and 316 Austenitic stainless steel in 0.5M H2SO4 using the potentiodynamic polarization method. The nanoparticles were synthesized from the sweet potato (Ipomoea batatas) plant extracts using Silver Nitrate (AgNO3) and were characterized using Atomic Adsorption Spectroscopy, Fourier Transform Infrared Spectroscopy and the Ultraviolet Visible Spectroscopy Technique. The AAS results showed that the plant extract is eco-friendly as it does not contain heavy metals. The FTIR results showed the different functional groups present in the extracts obtained from the different parts of the plant to be Alcohol O-H, Nitrile C≡N, Alkyne C≡C, Alkene C=C and Benzene Ring C=C. The UV-Vis results showed the presence of phenolic compound which aided inhibition. The results from the potentiodynamic polarization showed that the nanoparticle obtained from the leaf has the highest corrosion inhibition efficiency and the corrosion inhibition efficiency increases as the concentration of inhibitors increases.


Author(s):  
Destri Muliastri ◽  
Devi Eka Septiyani ◽  
Naufal Afif ◽  
Vania Tingting Sirenden ◽  
Januar Nur Rohmah Suprihartini

AISI 1070 steel is a material that has corrosion when it reacts with the environment. One way to inhibit the corrosion rate is by using organic inhibitors. The organic inhibitors used mango leaves and mango rinds with variations in the concentration of organic inhibitors of 0%, 6%, and 8%, respectively. This study aimed to determine the effectiveness of mango leaf extract and mango rinds as an inhibitor against the corrosion rate of AISI 1070 Steel. The extraction was carried out using the Maceration Method. Fourier Transform Infrared (FTIR), Potenzyodinamic, and Weight Loss tests were carried out in this study.  FTIR results show that both mango rinds and mango leaf have ingredients that were able to inhibit the corrosion rate, such as flavonoid functional groups including C – H, C = O, and C – O. Using the weight-loss method, the best corrosion rate was found in the mango rinds extract with a concentration of 8 mL, which was 31.784 mm/year with an inhibition efficiency of 92%. The highest corrosion rate was in 2M H2SO4 solution using potentiodynamic, without a mixture of inhibitors, that is 0.15589478 mm/year.


Author(s):  
Yuli Yetri ◽  
E Emriadi ◽  
Novesar Jamarun ◽  
G Gunawarman

Efek inhibisi korosi dan sifat-sifat adsorpsi oleh ekstrak kulit buah kakao (Theobroma cacao)  pada baja lunak (mild steel) dalam larutan asam 1,5M HCl telah dipelajari menggunakan teknik konvensional metode berat hilang pada variasi waktu, konsentrasi dan suhu. Parameter-parameter termodinamika seperti energi aktivasi, entalpi, entropi dan perubahan energi bebas dihitung. Polarisasi elektrokimia telah dievaluasi untuk memastikan jenis inhibitor. Spektra infrared dan GCMS dilakukan untuk mengetahui senyawa ekstrak yang berperan  dalam proses inhibisi. Morfologi permukaan sampel diamati dengan menggunakan scanning electro microscopy dengan  energy dispersive X-ray spectroscopy (SEM-EDX) . Keseluruhan hasil penelitian menunjukkan bahwa ekstrak polar kulit buah coklat  dapat digunakan sebagai inhibitor korosi yang efektif pada baja karbon di lingkungan 1,5M HCl dengan pencapaian efisiensi  inhibisi   terkorosi sebesar 96.26% (weight loss) dan 92.08% (Tafel) pada konsentrasi ekstrak 2,5% selama768 jam. Mekanisme inhibisi adalah  adsorpsi chemiadsorpsi berdasar tingginya nilai entalpi dan energi bebas.Effisiensi Inhibisi diketahui meningkat dengan peningkatan konsentrasi dari ekstrak serta menurun dengan peningkatan suhu. Kurva polarisasi menunjukkan inhibitor ini berperilaku sebagai inhibitor campuran dengan dominan pada inhibisi katodik. Ekstrak diadsorpsi oleh permukaan mild steel  mengikuti model adsorpsi isotherm Langmuir. Kondisi permukaan mild steel menunjukan terjadinya adsorpsi di permukaan membentuk lapisan tipis di permukaan logam. Penambahan ekstrak kulit buah kakao ke dalam larutan HCl sangat efektif untuk mengurangi serangan korosi di permukaan mild steel.  Kata kunci: Korosi, Inhibitor, Theobroma cacao, Mild steel, Potensiodinamik Corrosion Inhibition Efficiency Mild Steel in Acid Media with Inhibitor Peels Extract of Cacao (Theobroma cacao)ABSTRACT Inhibition and adsorption properties of Theobroma cacao peel polar extract addition on corrosion inhibition efficiency of 0.3%C mild steel in hydrochloric acid solution for various exposuring time, extract concentration and working temperature were investigated using weight loss test method. Electrochemical polarization test was also conducted to confirm the effectiveness of inhibition. Infrared spectrum of the samples was also evaluated to reveal compounds of the extract which controll the inhibition process. Morphology and local composition of sample surfaces were respectively examined by scanning electron microscope  (SEM) and energy dispersive X-ray spectroscopy (EDX). Thermodynamic parameters such as energy activation, enthalpy, entropy and change in the free energy were then determined using related data. The results show that the inhibition efficiency increases significantly up to 96.3% (by weight loss method) and 92.08% (Tafel) with the increase of TCPE content. The optimum efficiency is obtained at extract concentration of 2,5% for exposuring time of 768h. However, the efficiency decreases slightly with increasing working temperature in the range of 303K-323K. The polarization curve shows the inhibitor behaves as a mixed inhibitor with the dominant cathodic inhibition. The adsorption model is found to obey Langmuir adsorption isotherm. Surface condition is  improved due to the adsorption and then formation of thin layer film protection in the surface of the steel. The addition of extract of cacao peels into HCl is effective to minimize corrosion attack on the mild steel. Key words: Corrosion, inhibitor, Theobroma cacao peel, Mild steel, Potensiodinamic


Sign in / Sign up

Export Citation Format

Share Document