scholarly journals Address Geocoding Services in Geospatial-based Epidemiological Analysis: A Comparative Reliability for Domestic Disease Mapping

Geographical information system (GIS) has been used for geospatial epidemiology. Through the process, it begins with geocoding, i.e. assigning geographic coordinates to an address on a map. This process is a bridge between spatial information and its attribute data. Fortunately, some open geocoding services are available. The paper aims to examine the mapping reliability of some online geocoding services to map the spread of tuberculosis (TB) in Sarawak, Malaysia towards practical implementation in the domestic health department. The features examined the common platforms, namely QGIS, Google Map, and ArcGIS Online, were selected and explored in terms of the following variables; positional quality, speed, cost, and coverage. Based on our exploratory experiment, ArcGIS Online offers relevant mapping features for the local geocoding services of the TB locations compared to the other two platforms. But the chosen geocoding methods or services may depend on the nature of the project, cost restrictions, and the experience of an analyst. Comparison of the positional accuracy with manual reference methods (e.g GPS measurement and manual digitizing) could be further studied.

2018 ◽  
Vol 40 ◽  
pp. 04017
Author(s):  
Adrien Vergne ◽  
Céline Berni ◽  
Jérôme Le Coz

There has been a growing interest in the last decade in extracting information on Suspended Sediment Concentration (SSC) from acoustic backscatter in rivers. Quantitative techniques are not yet effective, but acoustic backscatter already provides qualitative information on suspended sediments. In particular, in the common case of a bi-modal sediment size distribution, corrected acoustic backscatter can be used to look for sand particles in suspension and provide spatial information on their distribution throughout a river crosssection. This paper presents a case-study where these techniques have been applied.


Hematology ◽  
2001 ◽  
Vol 2001 (1) ◽  
pp. 507-521 ◽  
Author(s):  
Robert F. Todd ◽  
Donald M. Miller ◽  
Roy L. Silverstein

Abstract This year the Hematology Grants Workshop, chaired by Dr. Todd, includes a comprehensive listing of available National Institutes of Health, Department of Veterans Affairs, and non-federal grants applicable to fellows and junior faculty as well as to established investigators. In Section II, Dr. Miller discusses the essential principles of successful grant writing with a special emphasis on the young investigator. He highlights the best strategies to take and the common mistakes to avoid. In Section III, Dr. Silverstein outlines the structure of the current NIH Integrated Review Group (IRG) system and the study sections of the most relevance to hematology. He traces the path that a grant takes from review to funding including the way in which grants are reviewed at NIH Study Section Meetings and provides advice in the preparation of revised applications.


2021 ◽  
Vol 33 (3) ◽  
pp. 506-511
Author(s):  
Sheikh Mohd Saleem ◽  
Chaitnya Aggarwal ◽  
Om Prakash Bera ◽  
Radhika Rana ◽  
Gurmandeep Singh ◽  
...  

"Geographic information system (GIS) collects various kinds of data based on the geographic relationship across space." Data in GIS is stored to visualize, analyze, and interpret geographic data to learn about an area, an ongoing project, site planning, business, health economics and health-related surveys and information. GIS has evolved from ancient disease maps to 3D digital maps and continues to grow even today. The visual-spatial mapping of the data has given us an insight into different diseases ranging from diarrhea, pneumonia to non-communicable diseases like diabetes mellitus, hypertension, cardiovascular diseases, or risk factors like obesity, being overweight, etc. All in a while, this information has highlighted health-related issues and knowledge about these in a contemporary manner worldwide. Researchers, scientists, and administrators use GIS for research project planning, execution, and disease management. Cases of diseases in a specific area or region, the number of hospitals, roads, waterways, and health catchment areas are examples of spatially referenced data that can be captured and easily presented using GIS. Currently, we are facing an epidemic of non-communicable diseases, and a powerful tool like GIS can be used efficiently in such a situation. GIS can provide a powerful and robust framework for effectively monitoring and identifying the leading cause behind such diseases.  GIS, which provides a spatial viewpoint regarding the disease spectrum, pattern, and distribution, is of particular importance in this area and helps better understand disease transmission dynamics and spatial determinants. The use of GIS in public health will be a practical approach for surveillance, monitoring, planning, optimization, and service delivery of health resources to the people at large. The GIS platform can link environmental and spatial information with the disease itself, which makes it an asset in disease control progression all over the globe.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1202 ◽  
Author(s):  
Shin Fujii ◽  
Takaaki Furubayashi ◽  
Toshihiko Nakata

District heating systems (DHSs) which utilize excess heat play an important role in energy infrastructure in many European countries. In contrast to Europe, the DHS is not common and excess heat is not reused effectively in Japan. Almost all the DHSs in Japan were designed as first-generation district heating (1GDH) systems or 2GDH systems. No 4GDH systems have been introduced in Japan. The present study designs a 4GDH system utilizing excess heat from a wide area of Northern Japan and evaluates its feasibility. First, available heat amounts from two excess heat resources were calculated: waste incineration plants and thermal power plants. Second, heat demand from both residential and commercial sectors was estimated using a 1 km mesh, and a heat load curve was created for each mesh based on load curve data. Third, the DHS was designed with excess heat plants as a supply-side heat resource, and spatial information of the demand side made use of the geographical information system (GIS). Further analysis was conducted on selected DHSs in three cities in order to evaluate those systems’ feasibility based on energy efficiency, CO2 emissions, and economic aspects. The result shows that 70.5 PJ of heat can be supplied by DHS in Northern Japan, replacing imported fossil fuels such as petroleum and LPG with regional excess heat. The designed DHS could supply heat with equivalent costs compared to European countries.


Author(s):  
Mihai Valentin Herbei ◽  
Roxana Herbei ◽  
Laura Smuleac ◽  
Tudor Salagean

The Geographical Information Systems technology is used in many fields where the spatial information is very important and relevant, that means in all fields that use a system for saving, analyzing and representing the data which are processed. The aim of this paper is using modern technology for monitoring the environment. Geographical Information System together with remote sensing have a very important role in decision process regarding the environment. Integration of remote sensing images in a Geographical Information System which enables complex spatial analysis is a useful and modern solution for environmental management and decision-making process. Satellite images contain various information that can support environmental monitoring, images that can be analyzed and interpreted in various ways by using the Geographical Information System tools.


2016 ◽  
Vol 24 (1) ◽  
pp. 6-16 ◽  
Author(s):  
Adebayo Wahab Salami ◽  
Oseni Taiwo Amoo ◽  
Joshiah Adetayo Adeyemo ◽  
Abdulrasaq Apalando Mohammed ◽  
Adeniyi Ganiyu Adeogun

AbstractThis study utilized Spatial Information Technology (SIT) such as Remote Sensing (RS), a Geographical Information System (GIS), the Global Positioning System (GPS) and a high-resolution Digital Elevation Model (DEM) for a morphometrical analysis of five sub-basins within the Lower Niger River Basin, Nigeria. Morpho-metrical parameters, such as the total relief, relative relief, relief ratio, ruggedness number, texture ratio, elongation ratio, circularity ratio, form factor ratio, drainage density, stream frequency, sinuosity factor and bifurcation ratio, have been computed and analyzed. The study revealed that the contribution of the morphometric parameters to flooding suggest catchment No. 1 has the least concentration time and the highest runoff depth. Catchment No. 4 has the highest circularity ratio (0.35) as the most hazardous site where floods could reach a great volume over a small area.


Author(s):  
Olga De Cos ◽  
Valentín Castillo ◽  
David Cantarero

Several studies on spatial patterns of COVID-19 show huge differences depending on the country or region under study, although there is some agreement that socioeconomic factors affect these phenomena. The aim of this paper is to increase the knowledge of the socio-spatial behavior of coronavirus and implementing a geospatial methodology and digital system called SITAR (Fast Action Territorial Information System, by its Spanish acronym). We analyze as a study case a region of Spain called Cantabria, geocoding a daily series of microdata coronavirus records provided by the health authorities (Government of Cantabria—Spain) with the permission of Medicines Ethics Committee from Cantabria (CEIm, June 2020). Geocoding allows us to provide a new point layer based on the microdata table that includes cases with a positive result in a COVID-19 test. Regarding general methodology, our research is based on Geographical Information Technologies using Environmental Systems Research Institute (ESRI) Technologies. This tool is a global reference for spatial COVID-19 research, probably due to the world-renowned COVID-19 dashboard implemented by the Johns Hopkins University team. In our analysis, we found that the spatial distribution of COVID-19 in urban locations presents a not random distribution with clustered patterns and density matters in the spread of the COVID-19 pandemic. As a result, large metropolitan areas or districts with a higher number of persons tightly linked together through economic, social, and commuting relationships are the most vulnerable to pandemic outbreaks, particularly in our case study. Furthermore, public health and geoprevention plans should avoid the idea of economic or territorial stigmatizations. We hold the idea that SITAR in particular and Geographic Information Technologies in general contribute to strategic spatial information and relevant results with a necessary multi-scalar perspective to control the pandemic.


2019 ◽  
Vol 4 (4) ◽  
pp. 70
Author(s):  
Iau-Teh Wang

The evaluation of portal locations for mountain tunnels is among the most crucial considerations during route selection and structural layout planning. The development of spatial information technology has provided a more objective approach for assessing the slope stability of potential portal sites. The simulations in such studies have been performed to evaluate potential hazards and slope stability. However, potential instabilities resulting from excavation are seldom considered in these studies. Therefore, a method based on spatial information technology was developed in this study for considering the potential impact of the direction and depth of excavations on portal stability. An analysis method for an infinite slope was integrated into the geographical information system for evaluating the stability of critical wedges. The proposed method provides a reasonable estimation comparable with that provided by the conventional slice method. The results of applying this method to six mountain tunnel portals where slope instability occurred during construction indicate that the actual outcomes agreed with the predicted outcomes. For potential portal site evaluation, the proposed method facilitates the rapid estimation of safety factors for various slope designations, which is useful for site selection.


2020 ◽  
pp. 105971232092474
Author(s):  
André Cyr ◽  
Julie Morand-Ferron ◽  
Frédéric Thériault

Spatial information can be valuable, but new environments may be perceived as risky and thus often evoke fear responses and risk-averse exploration strategies such as thigmotaxis or wall-following behavior. Individual differences in risk-taking (boldness) and thigmotaxis have been reported in natural taxa, which may benefit their survival. In neurorobotic, the common approach is to reproduce cognitive phenomena with multiple levels of bio-inspiration into robotic scenarios. Since autonomous robots may benefit from these different behaviors in exploration tasks, this study aims at simulating two exploration strategies in a virtual robot controlled by a spiking neural network. The experimental context consists in a visual learning task solved through an operant conditioning procedure. Results suggest that the proposed neural architecture sustains both behaviors, switching from one to the other by external cues. This original bio-inspired model could be used as a first step toward further investigations of neurorobotic personality modulated by learning and complex exploration contexts.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4516
Author(s):  
Huynh Truong Gia Nguyen ◽  
Erik Lyttek ◽  
Pankaj Lal ◽  
Taylor Wieczerak ◽  
Pralhad Burli

Bioenergy has been globally recognized as one of the sustainable alternatives to fossil fuels. An assured supply of biomass feedstocks is a crucial bottleneck for the bioenergy industry emanating from uncertainties in land-use changes and future prices. Analytical approaches deriving from geographical information systems (GIS)-based analysis, mathematical modeling, optimization analyses, and empirical techniques have been widely used to evaluate the potential for bioenergy feedstock. In this study, we propose a three-phase methodology integrating fuzzy logic, network optimization, and ecosystem services assessment to estimate potential bioenergy supply. The fuzzy logic analysis uses multiple spatial criteria to identify suitable biomass cultivating regions. We extract spatial information based on favorable conditions and potential constraints, such as developed urban areas and croplands. Further, the network analysis uses the road network and existing biorefineries to evaluate feedstock production locations. Our analysis extends previous studies by incorporating biodiversity and ecologically sensitive areas into the analysis, as well as incorporating ecosystem service benefits as an additional driver for adoption, ensuring that biomass cultivation will minimize the negative consequences of large-scale land-use change. We apply the concept of assessing the potential for switchgrass-based bioenergy in Missouri to the proposed methodology.


Sign in / Sign up

Export Citation Format

Share Document