scholarly journals Efficacy of Neem, Tithonia and Tephrosia Leaf Extracts in Management of Root-Knot Nematodes in French Beans (Phaseolus vulgaris L.)

2019 ◽  
Vol 7 (2) ◽  
pp. 240
Author(s):  
Joshua K. Njenga ◽  
Geofrey K. Gathungu ◽  
Jesca N. Mbaka

Root-knot nematodes (Meloidogyne spp.) are a major problem in French bean production within the smallholder farming systems. Control of root-knot using synthetic nematicides is not viable due to environmental concerns relating to their toxic residues. There is need to develop alternative control options that will promote soil health and reduce parasitic nematode densities. A study was conducted to determine the efficacy of Neem (Azadirachta indica A. Juss), Tithonia (Tithonia diversifolia) and Tephrosia (Tephrosia purpurea) leaf extracts in management of root-knot. Controlled lath house and field trials were conducted where the treatments were extracts from Neem, Tithonia and Tephrosia at different concentration levels of 25 ml/L, 50 ml/L and 100 ml/L). Vydate (Oxamyl 10%) a synthetic nematicide served as a standard positive control while treatments with no extracts application and no nematode application served as negative controls. The treatments in the lath house were arranged in completely randomized design while the field trials were arranged in randomized complete block design. Fench beans were planted on nematode infested soils and data on root galling indices and yield components was collected. Data collected was subjected to analysis of variance and significantly different means separated using Tukey’s Studentized Range Test at P=0.05. The extracts evaluated reduced root galling with their efficacy being similar to that of Vydate® (Oxamyl 10%) which was used as a positive control. Neem extracts treatments had the lowest mean galling index of the extracts, followed by Tithonia. Root-knot nematode galling indices were highest in the untreated control at 10 both in trial I and trial II. Treatment trials from Neem and Tithonia at concentration levels of 100 ml/L resulted in highest yield of French beans while yield from the untreated plants were the lowest. The results indicate extracts can be adopted to suppress root-knot nematodes.

2019 ◽  
Vol 7 (1) ◽  
pp. 62-67
Author(s):  
E. O. Ogumo ◽  
W. M. Muiru ◽  
J. W. Kimenju ◽  
D. M. Mukunya

Root-knot nematodes (RKN) (Meloidogyne spp) are a serious pest causing heavy economic losses in a wide range of agricultural crops. A trial was carried out to evaluate the effectiveness of various eco-friendly nematicides in the management of RKN affecting French bean. The field trial was carried out in two seasons with the following treatments; Rigel-G (salicylic acid), Phyto Protect (Sesame oil extract), Mytech (Paecilomyces lilacinus), Neemraj 0.3% (Azadirachtin), Vydate® (Oxamyl) as a positive control and an untreated control. Various rates; Rigel –G (2.5 ml/l), Phyto Protect (10 l/ha), Mytech (125 g/ha) Neemraj 0.3% (3L/ha) and Vydate® (6 l/ha) of treatments were administered and damage on plants was assessed based on galling indices, crop biomass and yield whereas nematode reproductive potential was assessed based on the J2 counts. There was no significant difference (P ≥ 0.05) in the nematode population densities and galling indices observed among the eco-friendly nematicides and the conventional nematicide (Vydate®). Eco-friendly nematicides had a significant (P ≤ 0.05) reduction of RKN J2 population densities compared to the negative control. The negative control had the highest mean of root-knot nematode densities (240 RKN/200 cc soil) and a galling index of 3.77 while Vydate and Neemraj had the lowest mean density (40 RKN/200 cc soil) in the first season. Similar results were observed in the second season with control having the highest RKN J2 population densities (285 RKN/200 cc soil) and a galling index of 3.89 and Vydate had the lowest (23 RKN/200 cc soil). The results of this study clearly indicate that eco-friendly nematicides can be fully adopted to suppress RKN in French beans as alternatives to conventional nematicides.


1982 ◽  
Vol 22 (117) ◽  
pp. 357 ◽  
Author(s):  
GR Stirling ◽  
MF Wachtel

The performance of 15 potentially useful nematode-resistant tomato varieties (Ace Hy, Better Boy, Bigset, Bonus, Calmart, Magnifico, Monte Carlo, Patriot, Red Supreme, Rich Reward, Surprise, Terrific, VFN Bush, VFN 8 and Vine Ripe) was assessed in field trials at Loveday and Loxton, South Australia. All varieties showed some nematode resistance when grown in sites heavily infested with root-knot nematodes (Meloidogyne javanica) and most produced yields which were not significantly less than the commonly used susceptible varieties (Burnley Gem, Floradade, Grosse Lisse and Q3) grown in soil treated with nematicides. However, the nematode-resistant varieties were of limited value commercially because the fruit was either susceptible to cracking or too soft to be transported long distances. In glasshouse tests, biotypes of root-knot nematode capable of attacking resistant varieties were not observed. All resistant varieties exhibited resistance against populations of M. javanica from grape, peach, sweet corn, tomato (variety Floradade), tomato (variety VFN Bush), and against field populations of Meloidogyne from both resistant and susceptible tomato varieties. These results suggest that agronomically acceptable nematode-resistant varieties would be useful in management programs to control root-knot nematodes in the Murray Valley.


2019 ◽  
Vol 11 (1) ◽  
pp. 16-22
Author(s):  
N. B. Izuogu ◽  
H. S. Baba ◽  
E. O. Winjobi

Abstract Two field trials were carried out at the Teaching and Research Farm of the University of Ilorin in the 2012 and 2014 planting seasons to find out the effeciency of Trichoderma harzianum as a bio-control agent in controlling root-knot nematode (Meloidogyne incognita) in two pepper varieties (F1 Nikita and Gianfranco Fuscello). A 2 × 2 factorial design fitted into a randomized complete block design (RCBD) was used with 5 replications. The T. harzianum filtrate significantly increased plant height, number of leaves, and yield. The control showed higher root galling and soil nematode population. Varietal differences showed that F1 Nikita performed significantly better than G. Fuscello. The combination of Trichoderma and F1 Nikita appears effective for managing root-knot nematodes.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 606e-606
Author(s):  
S.A. Johnston ◽  
P.R. Probasco ◽  
J.R. Phillips

A study was conducted to investigate the effectiveness of soil fumigants and oxamyl nematicide on root-knot nematode, Meloidogyne hapla. A loamy sand carrot field of Danvers 126 carrots with a high population of root-knot nematodes was used for the test. Treatments included: 1, 3-dichloropropene, oxamyl, sodium methyldithiocarbamate, and the combination of 1,3-dichloropropene and oxamyl or sodium methyldithiocarbamate and oxamyl. All treatments were replicated 4 times in a randomized complete block design. Carrots were evaluated for plant stand, vigor, root length, galling, marketable yield, and total yield. Tremendous differences in plant vigor of young plants were observed among treatments. All of the fumigant treatments were significantly better than the other treatments and resulted in high plant stands and increased root length. Only the fumigated treatments, with or without foliar applications of oxamyl, resulted in significant marketable yield increases. Oxamyl foliar applications are beneficial in reducing root-knot nematode populations levels and damage when applied 6 weeks after initial treatment but not when they are initiated 10 weeks after initial treatment.


2020 ◽  
Vol 4 (3) ◽  
pp. 26-31
Author(s):  
Jonathan Atungwu ◽  
O. O. Olabinjo ◽  
C. O. Eche ◽  
I. Tijjani

Three cultivars of Telfairia occidentalis were assessed for their resistance or otherwise to root-knot nematodes (Meloidogyne spp.) infection on the field. Seeds were extracted from the pods of the selected cultivars and planted on moist sawdust in nursery trays to raise seedlings for transplanting. The experiment was laid out in Randomized Complete Block Design and replicated thrice. Pre-plant soil samples were taken to estimate initial nematode populations. At seven days after transplanting, eggs of Meloidogyne incognita (Mi) were extracted from 60 day-old Celosia argentea and used for inoculation of the three cultivars of T. occidentalis at approximately 5000 eggs/stand. Plants were, thereafter, observed for vine length, vine girth and number of leaves from two weeks till 8 weeks after transplanting. Final soil nematode population and root gall indices were determined at 60-66 days after inoculation. Reproduction factor was determined and used along with the gall indices to rate the cultivars for resistance or susceptibility to Mi. Results showed that cultivars NHTo-020 and NHTo-030 were susceptible to root-knot nematode which implied that plants allowed nematode reproduction and also suffered yield loss while cultivar NHTo-010 was tolerant to nematode infestation meaning that nematode reproduction took place but the plant does not suffer yield loss. There was no significant (P>0.05) difference in the mean vine length and number of leaf irrespective of the inoculum while effect on the vine girth was significantly variable. The inoculated plants gave significantly better vegetative growth than the naturally infested plants which indicated genetic variability in the cultivars.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Benjamin A. Okorley ◽  
Charles Agyeman ◽  
Naalamle Amissah ◽  
Seloame T. Nyaku

Root-knot nematodes (RKNs) (Meloidogyne spp.) represent agricultural pest of many economic crops, including tomatoes and potatoes. They advance a complex parasitic relationship with roots of tomato plants leading to modification of host structural and physiological functions in addition to significant yield loss. Resistance in solanaceous plants to RKNs has been identified and associated with the possession of Mi gene. The reaction of four Solanum rootstocks (S. aethiopicum L., S. macrocarpon L., S. lycopersicum L.“Mongal F1,” and S. lycopersicum L. “Samrudhi F1”) was evaluated in pots and in a natural Meloidogyne spp.-infested field in a two-year trial (2015–2016), to identify RKN-resistant rootstock(s), which can be utilized in tomato grafting as a management measure against these nematodes. A rootstock’s reaction to RKNs was assessed using root gall scores (GSs), egg count/g of root, and reproductive factors (Rfs) at the end of 6 and 12 weeks after transplanting (wat) in infested fields, respectively. Solanum macrocarpon, S. aethiopicum, and Mongal F1 showed tolerant responses with reduced root galling and low to high reproductive factors in pot and field experimentation. Although Samrudhi F1 was resistant in both pot and field trials and consistently decreased nematode root galling (<1.00) and reproduction (Rf < 1.00), it failed to significantly increase yield, as compared with the highest yield obtained by the tolerant rootstock, Mongal F1 (870.3 and 1236.6 g/plant, respectively). Evaluation of the four rootstocks against four (0, 500, 1,000, and 5000) RKN inocula levels (Juveniles) showed no significant differences among the growth parameters (fresh and dry shoot and root weights). Root-knot nematode-susceptible tomato varieties, for example, Pectomech F1, a popular tomato variety in Ghana, can be grafted onto the RKN-resistant and RKN-tolerant rootstocks for increased yields.


Plant Disease ◽  
2019 ◽  
Vol 103 (9) ◽  
pp. 2392-2396 ◽  
Author(s):  
J. O. Becker ◽  
A. Ploeg ◽  
J. J. Nuñez

California grows approximately 80% of the U.S. carrot production. The primary production challenges derive from root-knot nematodes (Meloidogyne spp.). Between 2013 and 2016, we evaluated three novel fluorinated nonfumigant nematicides in five field trials. Fluensulfone, fluopyram, and fluazaindolizine were applied as product-ready formulations at various rates, dates, and formulations. They were rated for their efficacy against the Southern root-knot nematode (M. incognita), their ability to mitigate nematode-caused crop damage, and potential to produce marketable carrot yield under high disease pressure. All trials were conducted in randomized complete block designs in M. incognita–infested, sandy-loam fields. Soil population of M. incognita at seeding and harvest, midseason plant vigor and fibrous root galling, harvest taproot galling, and marketable carrot yield were analyzed by ANOVA. Midseason gall ratings were indicative of disease ratings at harvest. All fluazaindolizine and fluensulfone treatments reduced at-harvest galling compared with the untreated controls. Fluopyram resulted in less galling but did not sufficiently protect the lower part of the taproot. Overall, fluazaindolizine at 2.24 kg/ha resulted in the most consistent and highest marketable carrot yield, followed by fluensulfone at 2.95 kg/ha. Both fluazaindolizine and fluensulfone will likely provide effective and target-selective crop protection against root-knot nematodes in fresh carrot production.


Plant Disease ◽  
2010 ◽  
Vol 94 (8) ◽  
pp. 1015-1021 ◽  
Author(s):  
C. L. Rivard ◽  
S. O'Connell ◽  
M. M. Peet ◽  
F. J. Louws

Southern blight (Sclerotium rolfsii) and root-knot nematodes (Meloidogyne spp.) cause severe damage to fresh-market tomato (Solanum lycopersicum) throughout the southeastern United States. Grafting is an emerging technology in U.S. tomato production, and growers require information regarding the resistance characteristics conferred by rootstocks. In this study, southern blight (SB) and root-knot nematodes (RKN) were effectively managed using interspecific hybrid rootstocks. During 2007 and 2008, field trials were carried out at two locations that had soils naturally infested with S. rolfsii. At the end of the growing seasons, the mean SB incidence of nongrafted plants was 27 and 79% at the two sites. SB incidence among plants grafted onto rootstock cultivars Big Power (one location only), Beaufort, and Maxifort ranged from 0 to 5%, and area under the disease progress curve (AUDPC) values were lower than for nongrafted and self-grafted controls (P < 0.01). At one location, soils were naturally infested with RKN, and all three rootstocks reduced RKN AUDPC and RKN soil populations at first harvest (P < 0.01). Big Power was particularly effective at reducing RKN galling and RKN soil populations at final fruit harvest (P < 0.01). Fruit yield was higher when resistant rootstocks were utilized (P < 0.05), and in our study grafting was effective at maintaining crop productivity in soils infested with S. rolfsii and M. incognita.


2004 ◽  
Vol 52 (2) ◽  
pp. 157-163
Author(s):  
C. U. Egbo ◽  
M. A. Adagba ◽  
D. K. Adedzwa

Field trials were conducted in the wet seasons of 1997 and 1998 at Makurdi, Otukpo and Yandev in the Southern Guinea Savanna ecological zone of Nigeria to study the responses of ten soybean genotypes to intercropping. The experiment was laid out in a randomised complete block design. The genotypes TGX 1807-19F, NCRI-Soy2, Cameroon Late and TGX 1485-1D had the highest grain yield. All the Land Equivalent Ratio (LER) values were higher than unity, indicating that there is great advantage in intercropping maize with soybean. The yield of soybean was positively correlated with the days to 50% flowering, days to maturity, plant height, pods/plant and leaf area, indicating that an improvement in any of these traits will be reflected in an increase in seed yield. There was a significant genotype × yield × location interaction for all traits. This suggests that none of these factors acted independently. Similarly, the genotype × location interaction was more important than the genotype × year interaction for seed yield, indicating that the yield response of the ten soybean genotypes varied across locations rather than across years. Therefore, using more testing sites for evaluation may be more important than the number of years.


2019 ◽  
pp. 61-67

Recognition of high yielding and nitrogen (N) fixing groundnut genotypes and desegregating them in the cereal-based cropping systems common in savannah regions will enhance food security and reduce the need for high N fertilizers hence, minimize the high cost and associated environmental consequences. Field trials were conducted during the 2015 growing season at the Research Farms of Bayero University Kano (BUK) and Institute for Agricultural Research (IAR), Ahmadu Bello University, Samaru-Zaria to assess the yield potential and Biolog- ical N fixation in 15 groundnut genotypes (ICG 4729, ICGV-IS 07823, ICGV-IS 07893, ICGV-IS 07908, ICGV- SM 07539, ICGV- SM 07599, ICGV-IS 09926, ICGV-IS 09932, ICGV-IS 09992, ICGV-IS 09994, SAMNUT-21, SAMNUT-22, SAMNUT-25, KAMPALA and KWANKWAS). The groundnut genotypes and reference Maize crop (SAMMAZ 29) were planted in a randomized complete block design in three replications. N difference method was used to estimate the amount of N fixed. The parameters determined were the number of nodules, nod- ule dry weight, shoot and root dry weights, pod, and haulm yield as well as N fixation. The nodule dry weight, BNF, haulm, and pod yield were statistically significant (P<0.01) concerning genotype and location. Similarly, their interac- tion effect was also highly significant. ICGV-IS 09926 recorded the highest nod- ule dry weight of 2.07mg /plant across the locations while ICGV-IS 09932 had the highest BNF value of 140.27Kg/ha. Additionally, KAMPALA had the high- est haulm yield, while ICGV-IS 07893 had the highest pod yield across the loca- tions with a significant interaction effect. The result shows that ICGV-IS 07893 and ICGV-IS 09932, as well as ICGV-IS 09994 and SAMNUT – 22, were the best genotypes concerning BNF, haulm and pod yield in the Northern Guinea and Sudan Savannahs of Nigeria respectively with the potential for a corresponding beneficial effect.


Sign in / Sign up

Export Citation Format

Share Document