scholarly journals Enhanced Accuracy of CMOS Smart Temperature Sensors by Nonlinear Curvature Correction

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4087 ◽  
Author(s):  
Gareth Lewis ◽  
Patrick Merken ◽  
Marijke Vandewal

In this paper, we demonstrate an improvement in the accuracy of a low-cost smart temperature sensor, by measurement of the nonlinear curvature correction at multiple temperature references. The sensors were positioned inside a climate chamber and connected outside to a micro-controller via a network cable. The chamber temperature was increased systematically over a wide range from −20 °C to 55 °C. A set of calibration curves was produced from the best fitting second-order polynomial curves for the offset in temperature between the sensor and reference. An improvement in accuracy of ±0.15 °C is with respect to the mentioned temperature range, compared to the significantly higher value reported of ±0.5 °C by the manufacturer for similar conditions. In summary, we demonstrate a significant improvement in the calibration of a low-cost, smart sensor frequently used in research and academic projects over a useful range of temperatures.

2018 ◽  
Vol 24 (4) ◽  
pp. 739-743 ◽  
Author(s):  
Simone Luigi Marasso ◽  
Matteo Cocuzza ◽  
Valentina Bertana ◽  
Francesco Perrucci ◽  
Alessio Tommasi ◽  
...  

Purpose This paper aims to present a study on a commercial conductive polylactic acid (PLA) filament and its potential application in a three-dimensional (3D) printed smart cap embedding a resistive temperature sensor made of this material. The final aim of this study is to add a fundamental block to the electrical characterization of printed conductive polymers, which are promising to mimic the electrical performance of metals and semiconductors. The studied PLA filament demonstrates not only to be suitable for a simple 3D printed concept but also to show peculiar characteristics that can be exploited to fabricate freeform low-cost temperature sensors. Design/methodology/approach The first part is focused on the conductive properties of the PLA filament and its temperature dependency. After obtaining a resistance temperature characteristic of this material, the same was used to fabricate a part of a 3D printed smart cap. Findings An approach to the characterization of the 3D printed conductive polymer has been presented. The major results are related to the definition of resistance vs temperature characteristic of the material. This model was then exploited to design a temperature sensor embedded in a 3D printed smart cap. Practical implications This study demonstrates that commercial conductive PLA filaments can be suitable materials for 3D printed low-cost temperature sensors or constitutive parts of a 3D printed smart object. Originality/value The paper clearly demonstrates that a new generation of 3D printed smart objects can already be obtained using low-cost commercial materials.


2020 ◽  
Vol 96 (1) ◽  
pp. 97-110
Author(s):  
James Hendee ◽  
Natchanon Amornthammarong ◽  
Lewis Gramer ◽  
Andrea Gomez

The role of elevated sea temperatures in coral bleaching has been well documented. Many of the sea temperature records utilized for purposes of widespread, multi-species bleaching predictions in recent publications have been acquired through satellite remote sensing. Satellites estimate sea temperatures at only a narrow range of depths near the surface of the ocean and may therefore not adequately represent the true temperatures endured by the world's coral ecosystems. To better characterize sea temperature regimes that coral reef ecosystems experience, as well as better define the individual thresholds for each species that bleaches, in situ sea temperature sensors are required. Commercial sensors are expensive in large quantities, however, reducing the capacity to conduct large- scale research programs to elucidate the range of significant scales of temperature variability. At the National Oceanic and Atmospheric Administration's (NOAA) Atlantic Oceanographic and Meteorological Laboratory (AOML), we designed a low-cost (roughly US$9 in parts) and high- precision sea temperature sensor that uses an Arduino microprocessor board and a high accuracy thermistor. This new temperature sensor autonomously records temperatures onto a memory chip and provides better accuracy (+0.05 °C) than a comparable commercial sensor (+0.2 °C). Moreover, it is not difficult to build; anyone who knows how to solder can build the temperature sensor. In March 2019, students at middle and high schools in Broward County, Florida, built close to 60 temperature sensors. During 2019, these sensors will be deployed by Reef Check, a global-scale coral reef monitoring organization, as well as by other programs to determine worldwide sea temperature regimes through the Opuhala Project (https://www. coral. noaa. gov/opuhala). This paper chronicles results from the initial proof-of-concept deployments for these AOML-designed sensors.


2012 ◽  
Vol 1399 ◽  
Author(s):  
Kajal Jindal ◽  
Monika Tomar ◽  
Vinay Gupta

ABSTRACTTemperature dependent optical properties of RF-sputtered c-axis oriented ZnO:N thin film have been investigated. Surface Plasmon modes are excited at the metal-dielectric interface in the Kretschmann-Reather configuration using prism coupling technique. Effect of ZnO:N thin film deposited over Prism-Au structure on the SPR reflectance is studied over a wide range of temperature from 300–500 K at 633 nm wavelength. The value of dielectric constant of ZnO:N film obtained by fitting the experimentally obtained data with the theoretically generated SPR curve at the optical frequency is found to increase linearly with temperature. The increase in dielectric constant (4.03 to 4.11) with increase in temperature from 300 K to 500 K indicates a promising application of the system as an efficient low-cost temperature sensor.


2020 ◽  
pp. 177-181
Author(s):  
Saranya M D ◽  
Sakthi Priya V ◽  
Pradeepkumar G ◽  
Dineshkumar Ponnusamy

- In today’s situation involuntary classifications remain existence favoured over physical system. Home automation is playing significant part in humanoid lifespan. The paper is used intended for nursing and controlling the home-grown utilizations via World Wide Web which container interconnect through home automation system through an Internet entry, by means of announcement conventions. Home automation scheme uses the hand-held or vesture diplomacies as a user boundary. This paper goals at supervisory household utilizations via Smartphone using Bluetooth as announcement etiquette and interfaced with Arduino Board. It assimilates Passive Infrared (PIR) sensor, Temperature sensor, gas sensor, Light Dependent Resistor (LDR) sensor. At this time PIR sensor and Temperature sensors remained used for controlling the spotlight and fan. The statement through attendant permits the operator to excellent the fitting device. In the proposed organization an android app was developed to access the system wherever via Internet of things. The gas device used to designate the absorption of gas in the air. Buzzer attentive is given to warm others neighbouring home and also the possessor through internet via the smart receiver. The LDR is used to switch garden spotlight. This project provides a low cost and competent Homegrown Computerization System.


2018 ◽  
Vol 34 (5) ◽  
pp. 2510-2516
Author(s):  
Veeramani P. ◽  
Vimala Juliet A. ◽  
Sam Jebakumar J. ◽  
Jagadish R

In this paper, Micro Electro Mechanical System (MEMS) based temperature sensor is designed and fabricated for weather monitoring system at troposphere level. In this design we have used meander shape, because it is easy to vary the length. We have optimized the length in this design. Due to certain advantages like low cost, easily available, high melting and boiling point, molybdenum material is used for fabrication of this design. The four meander type temperature sensors are designed with various dimensions of sizes in 6.7mm×4mm, 9.5mm×4mm, 5.2mm×4mm, 6.5mm×4mm. The Temperature Coefficient of Resistance (TCR) values for four various sensors mentioned above are 3.4 ×10-4 C-1, 3.7×10-4 C-1, 7.0×10-4 C-1, 7.5×10-4 C-1. For radiosonde applications the sensor must have high sensitivity, high degree of accuracy, good linearity and with better TCR values. The experimental results are better for dimension 6.7mm ×4mm for all characteristics mentioned above. The practical results are compared with the theoretical values.


2021 ◽  
Vol 2145 (1) ◽  
pp. 012068
Author(s):  
P Chanthamanee ◽  
P Jinda ◽  
M Mani ◽  
S Prasitpong

Abstract The research aims to develop the experimental set of the temperature measurement in liquid by Arduino program displaying data on a smartphone via the Blynk application. The experimental set is composed of 1) 2 liquid temperature sensors (DS18B20 model), 2) Arduino program, and 3) LED screen for showing the temperature value in unit of °C and connect to a smartphone. The Arduino temperature sensor 1 and sensor 2 of the experimental set have 0.57% and 0.51% errors, respectively, compared with the temperature sensor of the B Smart Science Co., Ltd. company. The instrument is applied to the physics laboratory on Newton’s law of cooling to find the cooling rate of water and coffee. This low-cost instrument revealed high accuracy results and easy to connect with other devices.


2020 ◽  
Vol 64 (5) ◽  
pp. 50405-1-50405-5
Author(s):  
Young-Woo Park ◽  
Myounggyu Noh

Abstract Recently, the three-dimensional (3D) printing technique has attracted much attention for creating objects of arbitrary shape and manufacturing. For the first time, in this work, we present the fabrication of an inkjet printed low-cost 3D temperature sensor on a 3D-shaped thermoplastic substrate suitable for packaging, flexible electronics, and other printed applications. The design, fabrication, and testing of a 3D printed temperature sensor are presented. The sensor pattern is designed using a computer-aided design program and fabricated by drop-on-demand inkjet printing using a magnetostrictive inkjet printhead at room temperature. The sensor pattern is printed using commercially available conductive silver nanoparticle ink. A moving speed of 90 mm/min is chosen to print the sensor pattern. The inkjet printed temperature sensor is demonstrated, and it is characterized by good electrical properties, exhibiting good sensitivity and linearity. The results indicate that 3D inkjet printing technology may have great potential for applications in sensor fabrication.


2021 ◽  
pp. 096100062110165
Author(s):  
Mohammadhiwa Abdekhoda ◽  
Fatemeh Ranjbaran ◽  
Asghar Sattari

This study was conducted with the aim of evaluating the role of information and information resources in the awareness, control, and prevention of COVID-19. This study was a descriptive-analytical survey in which 450 participants were selected for the study. The data collection instrument was a researcher-made questionnaire. Descriptive and inferential statistics were used to analyze the data through SPSS. The findings show that a wide range of mass media has become well known as information resources for COVID-19. Other findings indicate a significant statistical difference in the rate of using information resources during COVID-19 based on age and gender; however, this difference is not significant regarding the reliability of information resources with regard to age and gender. Health information has an undisputable role in the prevention and control of pandemic diseases such as COVID-19. Providing accurate, reliable, and evidence-based information in a timely manner for the use of resources and information channels related to COVID-19 can be a fast and low-cost strategic approach in confronting this disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria Elena Antinori ◽  
Marco Contardi ◽  
Giulia Suarato ◽  
Andrea Armirotti ◽  
Rosalia Bertorelli ◽  
...  

AbstractMycelia, the vegetative part of fungi, are emerging as the avant-garde generation of natural, sustainable, and biodegradable materials for a wide range of applications. They are constituted of a self-growing and interconnected fibrous network of elongated cells, and their chemical and physical properties can be adjusted depending on the conditions of growth and the substrate they are fed upon. So far, only extracts and derivatives from mycelia have been evaluated and tested for biomedical applications. In this study, the entire fibrous structures of mycelia of the edible fungi Pleurotus ostreatus and Ganoderma lucidum are presented as self-growing bio-composites that mimic the extracellular matrix of human body tissues, ideal as tissue engineering bio-scaffolds. To this purpose, the two mycelial strains are inactivated by autoclaving after growth, and their morphology, cell wall chemical composition, and hydrodynamical and mechanical features are studied. Finally, their biocompatibility and direct interaction with primary human dermal fibroblasts are investigated. The findings demonstrate the potentiality of mycelia as all-natural and low-cost bio-scaffolds, alternative to the tissue engineering systems currently in place.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1807
Author(s):  
Estefanía Álvarez-Castillo ◽  
José Manuel Aguilar ◽  
Carlos Bengoechea ◽  
María Luisa López-Castejón ◽  
Antonio Guerrero

Composite materials based on proteins and carbohydrates normally offer improved water solubility, biodegradability, and biocompatibility, which make them attractive for a wide range of applications. Soy protein isolate (SPI) has shown superabsorbent properties that are useful in fields such as agriculture. Alginate salts (ALG) are linear anionic polysaccharides obtained at a low cost from brown algae, displaying a good enough biocompatibility to be considered for medical applications. As alginates are quite hydrophilic, the exchange of ions from guluronic acid present in its molecular structure with divalent cations, particularly Ca2+, may induce its gelation, which would inhibit its solubilization in water. Both biopolymers SPI and ALG were used to produce composites through injection moulding using glycerol (Gly) as a plasticizer. Different biopolymer/plasticizer ratios were employed, and the SPI/ALG ratio within the biopolymer fraction was also varied. Furthermore, composites were immersed in different CaCl2 solutions to inhibit the amount of soluble matter loss and to enhance the mechanical properties of the resulting porous matrices. The main goal of the present work was the development and characterization of green porous matrices with inhibited solubility thanks to the gelation of alginate.


Sign in / Sign up

Export Citation Format

Share Document