scholarly journals Laboratory study and measurement of stiffness and compaction of unsaturated clay soil by using the innovative rebound hammer

2021 ◽  
Vol 34 (02) ◽  
pp. 710-732
Author(s):  
Behrouz Halimi ◽  
Hamidreza Saba ◽  
Saeid Jafari MehrAbadi ◽  
Saeid Saeidi Jam

Defining soil behavioral parameters, which eventually results in predicting every short-term and long-term soil behavior, has continually been one of the interests of soil mechanics and has been of exceptional value. To this end, in this study, a novel method has been reviewed to determine the compressive behavior of fine-grained soils in the laboratory and the field, without sampling by the patented electronic device. In the lab, homogeneous materials of the intended soil underwent the compaction test, mechanical and physical tests, direct shear test, and impacts of the innovative rebound hammer in the horizontal and vertical directions in the test-box. The impact shear waves produce resistance and voltage output by force and dislocation sensors with high-sensitivity proportional to the pressure based on the soil surface stiffness. The obtained voltages are then converted to digital by an analog-to-digital converter and a microcontroller. Next, a number is shown on display by the "CodeVision" program. Then, by solving a quasi-dynamic equation (Viscoelastic spring-damper model) by MATLAB software and with the aid of laboratory-field results and correlation equations, a fitting connection between all effective mechanical soil parameters has been estimated to an acceptable extent. The effective mechanical parameters of the soil include the compaction percentage, specific gravity, and frequency of the system in the damped and non-damped states, the energy imposed on the soil, and the plastic stage strain in the range of less than 15% humidity. The results determine that increased hammering numbers are directly related to increased soil compaction and stiffness. In more detail, the reading of hammer numbers less than 2 corresponds to compaction of less than 75%, while the reading of hammer numbers greater than 3 in the vertical and 2.94 in the horizontal directions on clay surfaces designates compaction of 90%.

2018 ◽  
Vol 237 ◽  
pp. 02011
Author(s):  
LV Wei ◽  
Zhong-xin LI ◽  
LOU Peng

There is a great relationship between the passing capacity of vehicles on the ground deformation road and the properties of confined and shear of ground soil, so it is necessary to establish a model that can reflect the soil pressure of the deformation. Physical significance of classic soil pressure experience parameters model is indeterminate, it was generally obtained by a lot of specific soil test. In this paper a new analysis model was built though introducing the maximum stress value of the crawler board and soil surface on basis of a kind of existing analysis model. This model reveals the relations among the confined characteristics of soil, soil parameters and the geometry of confined crawler board. These soil parameters can be obtained through the conventional soil mechanics test without a large number of specific soil test. Through the contrast experiment and predictions results, this model can effectively predict the sinkage of ground soil under the load, and provide a theory basis for the prediction of vehicle mobility.


2014 ◽  
Vol 926-930 ◽  
pp. 4205-4208
Author(s):  
Yan Li Wu ◽  
Qing Feng Zhang ◽  
Ran Zhuo Zhang ◽  
Xiao Ming Mao ◽  
Xin Hua Sun

In the past ten years, methane has a greenhouse gas, and its concentration increases by 1% per year, while an estimated worldwide annual landfill cover soil surface from escaping methane is about 20 to 70 Mtpa. Microbial methane oxidation can be carried out about 80% of global consumption of methane, the soil microbial methane oxidation can reduce methane escaping from the soil to the atmosphere. Both in domestic and foreign ash recycling in landfill cover soil behavior has performed for many years, but there is a review of domestic and foreign literature ash, mostly looks at the aspects of physical and chemical properties and heavy metals, there is no assessment of the casing methane oxidation impact. This paper mainly urban incinerator ash as a research object, and after a landfill cover soil mined to study experimentally analyze the impact of ash added methane oxidation right.


Author(s):  
N. Maidanovych ◽  

The purpose of this work is to review and analyze the main results of modern research on the impact of climate change on the agro-sphere of Ukraine. Results. Analysis of research has shown that the effects of climate change on the agro-sphere are already being felt today and will continue in the future. The observed climate changes in recent decades have already significantly affected the shift in the northern direction of all agro-climatic zones of Europe, including Ukraine. From the point of view of productivity of the agro-sphere of Ukraine, climate change will have both positive and negative consequences. The positives include: improving the conditions of formation and reducing the harvesting time of crop yields; the possibility of effective introduction of late varieties (hybrids), which require more thermal resources; improving the conditions for overwintering crops; increase the efficiency of fertilizer application. Model estimates of the impact of climate change on wheat yields in Ukraine mainly indicate the positive effects of global warming on yields in the medium term, but with an increase in the average annual temperature by 2 ° C above normal, grain yields are expected to decrease. The negative consequences of the impact of climate change on the agrosphere include: increased drought during the growing season; acceleration of humus decomposition in soils; deterioration of soil moisture in the southern regions; deterioration of grain quality and failure to ensure full vernalization of grain; increase in the number of pests, the spread of pathogens of plants and weeds due to favorable conditions for their overwintering; increase in wind and water erosion of the soil caused by an increase in droughts and extreme rainfall; increasing risks of freezing of winter crops due to lack of stable snow cover. Conclusions. Resource-saving agricultural technologies are of particular importance in the context of climate change. They include technologies such as no-till, strip-till, ridge-till, which make it possible to partially store and accumulate mulch on the soil surface, reduce the speed of the surface layer of air and contribute to better preservation of moisture accumulated during the autumn-winter period. And in determining the most effective ways and mechanisms to reduce weather risks for Ukrainian farmers, it is necessary to take into account the world practice of climate-smart technologies.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1830
Author(s):  
Gullnaz Shahzadi ◽  
Azzeddine Soulaïmani

Computational modeling plays a significant role in the design of rockfill dams. Various constitutive soil parameters are used to design such models, which often involve high uncertainties due to the complex structure of rockfill dams comprising various zones of different soil parameters. This study performs an uncertainty analysis and a global sensitivity analysis to assess the effect of constitutive soil parameters on the behavior of a rockfill dam. A Finite Element code (Plaxis) is utilized for the structure analysis. A database of the computed displacements at inclinometers installed in the dam is generated and compared to in situ measurements. Surrogate models are significant tools for approximating the relationship between input soil parameters and displacements and thereby reducing the computational costs of parametric studies. Polynomial chaos expansion and deep neural networks are used to build surrogate models to compute the Sobol indices required to identify the impact of soil parameters on dam behavior.


2021 ◽  
Author(s):  
Myron van Damme

AbstractAn accurate means of predicting erosion rates is essential to improve the predictive capability of breach models. During breach growth, erosion rates are often determined with empirical equations. The predictive capability of empirical equations is governed by the range for which they have been validated and the accuracy with which empirical coefficients can be established. Most empirical equations thereby do not account for the impact of material texture, moisture content, and compaction energy on the erosion rates. The method presented in this paper acknowledges the impact of these parameters by accounting for the process of dilation during erosion. The paper shows how, given high surface shear stresses, the erosion rate can be quantified by applying the principles of soil mechanics. Key is thereby to identify that stress balance situation for which the dilatency induced inflow gives a maximum averaged shear resistance. The effectiveness of the model in predicting erosion rates is indicated by means of three validation test cases. A sensitivity analysis of the method is also provided to show that the predictions lie within the range of inaccuracy of the input parameters.


2021 ◽  
Vol 17 ◽  
pp. 174550652110170
Author(s):  
Hannah Masson

Background: The Coronavirus disease 2019 (COVID-19) pandemic has led to an unprecedented upheaval within global healthcare systems and resulted in the temporary pausing of the National Health Service (NHS) Scotland Cervical Screening Programme. With several months of backlogs in appointments, there has not only been a reduction in primary samples being taken for human papilloma virus (HPV) testing but there have also been fewer women referred to colposcopy for investigation and treatment of precancerous or cancerous changes as a result. Encouraging uptake for cervical screening was always a priority before the pandemic, but it is even more important now, considering that the fears and barriers to screening that women may have are now exacerbated by COVID-19. Objectives: This article explores the impact of the pandemic on the uptake of cervical screening within NHS Ayrshire & Arran and evaluates potential strategies to improve uptake now and in future such as self-sampling and telemedicine. Methods: This article presents evidence-based literature and local health board data relating to cervical screening during the pandemic. Results: Human papilloma virus self-sampling carried out by the woman in her home has been shown to improve uptake, especially in non-attenders, whilst maintaining a high sensitivity and, crucially, reducing the need for face-to-face contact. Increased education is key to overcoming barriers women have to screening and telemedicine can strengthen engagement with women during this time. Conclusion: There are lessons to be learned from the pandemic, and we must use this opportunity to improve cervical screening uptake for the future.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2015
Author(s):  
Iwona Jaskulska ◽  
Kestutis Romaneckas ◽  
Dariusz Jaskulski ◽  
Piotr Wojewódzki

Conservation agriculture has three main pillars, i.e., minimum tillage, permanent soil cover, and crop rotation. Covering the soil surface with plant residues and minimum mechanical soil disturbance can all result from introducing a strip-till one-pass (ST-OP) system. The aim of this study was to determine the impact of the ST-OP technology on the management of plant residues, soil properties, inputs, and emissions related to crop cultivation. We compared the effect of a ST-OP system against conventional tillage (CT) using a plough, and against reduced, non-ploughing tillage (RT). Four field experiments were conducted for evaluating the covering of soil with plant residues of the previous crop, soil loss on a slope exposed to surface soil runoff, soil structure and aggregate stability, occurrence of soil organisms and glomalin content, soil moisture and soil water reserve during plant sowing, labour and fuel inputs, and CO2 emissions. After sowing plants using ST-OP, 62.7–82.0% of plant residues remained on the soil surface, depending on the previous crop and row spacing. As compared with CT, the ST-OP system increased the stability of soil aggregates of 0.25–2.0 mm diameter by 12.7%, glomalin content by 0.08 g·kg−1, weight of earthworms five-fold, bacteria and fungi counts, and moisture content in the soil; meanwhile, it decreased soil loss by 2.57–6.36 t·ha−1 year−1, labour input by 114–152 min·ha−1, fuel consumption by 35.9–45.8 l·ha−1, and CO2 emissions by 98.7–125.9 kg·ha−1. Significant favourable changes, as compared with reduced tillage (RT), were also found with respect to the stability index of aggregates of 2.0–10.0 mm diameter, the number and weight of earthworms, as well as bacteria and fungi counts.


2015 ◽  
Vol 40 (4) ◽  
pp. 414-423 ◽  
Author(s):  
Phillip G. Bell ◽  
Ian H. Walshe ◽  
Gareth W. Davison ◽  
Emma J. Stevenson ◽  
Glyn Howatson

The impact of Montmorency tart cherry (Prunus cerasus L.) concentrate (MC) on physiological indices and functional performance was examined following a bout of high-intensity stochastic cycling. Trained cyclists (n = 16) were equally divided into 2 groups (MC or isoenergetic placebo (PLA)) and consumed 30 mL of supplement, twice per day for 8 consecutive days. On the fifth day of supplementation, participants completed a 109-min cycling trial designed to replicate road race demands. Functional performance (maximum voluntary isometric contraction (MVIC), cycling efficiency, 6-s peak cycling power) and delayed onset muscle soreness were assessed at baseline, 24, 48, and 72 h post-trial. Blood samples collected at baseline, immediately pre- and post-trial, and at 1, 3, 5, 24, 48, and 72 h post-trial were analysed for indices of inflammation (interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor alpha, high-sensitivity C-reactive protein (hsCRP)), oxidative stress (lipid hydroperoxides), and muscle damage (creatine kinase). MVIC (P < 0.05) did not decline in the MC group (vs. PLA) across the 72-h post-trial period and economy (P < 0.05) was improved in the MC group at 24 h. IL-6 (P < 0.001) and hsCRP (P < 0.05) responses to the trial were attenuated with MC (vs. PLA). No other blood markers were significantly different between MC and PLA groups. The results of the study suggest that Montmorency cherry concentrate can be an efficacious functional food for accelerating recovery and reducing exercise-induced inflammation following strenuous cycling exercise.


2004 ◽  
Vol 41 (2) ◽  
pp. 351-355 ◽  
Author(s):  
Dieter Stolle ◽  
Peijun Guo ◽  
Gabriel Sedran

This paper analyzes the impact of natural random variation of soil properties on the constitutive modelling of geomaterial behaviour. A theoretical framework for accommodating variation in soil properties is presented. The framework is then used to examine the consequence of parameter variability on stress–strain relations. An important observation is that average soil parameters from a series of tests on small specimens, in which density of the specimens varies randomly, do not necessarily reflect the average constitutive behaviour of soil. Model predictions are shown to be consistent with the experimental data.Key words: random variability, deterministic analysis, soil parameters, constitutive model.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jihwan Boo ◽  
Mark D. Hammig ◽  
Manhee Jeong

AbstractDual particle imaging, in which both neutrons and gamma-rays in the environment can be individually characterized, is particularly attractive for monitoring mixed radiation emitters such as special nuclear materials (SNM). Effective SNM localization and detection benefits from high instrument sensitivity so that real-time imaging or imaging with a limited number of acquired events is enabled. For portable applications, one also desires a dual particle imager (DPI) that is readily deployable. We have developed a hand-held type DPI equipped with a pixelated stilbene-silicon photomultiplier (SiPM) array module and low sampling-rate analog-to-digital converters (ADCs) processed via a multiplexed readout. The stilbene-SiPM array (12 × 12 pixels) is capable of effectively performing pulse shape discrimination (PSD) between gamma-ray and neutron events and neutron/gamma-ray source localization on the imaging plane, as demonstrated with 252Cf neutron/gamma and 137Cs gamma-ray sources. The low sampling rate ADCs connected to the stilbene-SiPM array module result in a compact instrument with high sensitivity that provides a gamma-ray image of a 137Cs source, producing 6.4 μR/h at 1 m, in less than 69 s. A neutron image for a 3.5 × 105 n/s 252Cf source can also be obtained in less than 6 min at 1 m from the center of the system. The instrument images successfully with field of view of 50° and provides angular resolution of 6.8°.


Sign in / Sign up

Export Citation Format

Share Document