scholarly journals Nickel and copper accumulate at low concentrations in cacao beans cotyledons and do not affect the health of chocolate consumers

2020 ◽  
Vol 17 (4) ◽  
pp. e0304
Author(s):  
Caique C. Medauar ◽  
Bismark L. Bahia ◽  
Thays M. Santana ◽  
Márcia E. S. Dos Reis ◽  
Mariana B. Soares ◽  
...  

Aim of study: Nickel (Ni) and Copper (Cu) are essential metals for the growth and development of plants. In view of the above, the aim of this work was to quantify and correlate Ni and Cu concentrations in the leaf and the parts of the fruit [pod husk, pulp, tegument (seed coating) and cotyledons] of clonal cacao genotype PH 16.Area of study: Cacao genotypes were collected from adult plants grown on farms located in three different climatic regions of southern Bahia, Brazil.Material and methods: Plant material was collected in four plots of twenty farms, located under different edaphic and topographic conditions. They were subjected to chemical analysis and later to statistical analyses.Main results: There was high variability of Ni and Cu concentrations in all evaluated plant materials. Leaf, pulp, and tegument were the plant materials that accumulated more Ni. On the other hand, the greatest accumulation of Cu occurred in the tegument and in the pod husk, while in the cotyledons there was little accumulation of these metals. The concentrations of Ni were influenced by the three climatic regions, a fact not observed for Cu, except at the leaf level. There was interdependence between the accumulation of Ni in the leaves and in the different parts of the fruit, a fact not observed for Cu.Research highlights: Since Ni and Cu accumulated in low concentrations in the cacao beans cotyledons, raw material for the manufacture of chocolate and other food products, these metallic elements do not affect the consumers' health.

2019 ◽  
Vol 25 (1) ◽  
Author(s):  
NARENDRA SINGH ◽  
N. S. BHADAURIA ◽  
PRADYUMN SINGH

The Bio-efficacy of eleven plant extracts namely viz.Neem Kernel; Rhizome of Ginger; Leaves of Datura, Gajarghas, Harsingar, Oak and Latjeera; Bulb of Garlic and Onion; Flowers of Chrysenthemum and Fruits of Chilli in the concentration of 5 percent and imidacloprid @ 40 g ai/ha was tested against mustard aphid, Lipaphiserysimi and their effect on D. rapae and Coccinellid beetle were tested in the Department of Entomology, College of Agriculture, Gwalior (M.P.). All the tested plant materials and imidacloprid @ 40 g ai/ha were effective significanty in reducing the aphid population over control.The aphid population in treated plots ranged from 7.2 to 40.0 as against 85.4 aphid/twig in untreated control. Among the plant material, three sprays of Neem Kernel were found most effective followed by three sprays of chilli fruits.All the plant extracts were found significantly safer to D. rapae and coccinellid bettle in comparision to insecticide (imidacloprid).


2020 ◽  
Vol 14 (1) ◽  
Author(s):  
K. Gafurov ◽  
B. Muhammadiev ◽  
Sh. Mirzaeva ◽  
F. Kuldosheva

The unique properties of supercritical carbon dioxide as a solvent are widely used for extraction. In supercritical media, the dissolution of molecules of various chemical nature is possible. The purpose of this investigation was to study the extraction process and obtain extracts from valuable regional plant materials by applying CO2 extraction under pre- and supercritical conditions. The objects of research were: ground seeds of melon, pumpkin and licorice roots, as well as mint leaves, mulberry and jida flowers. For extraction, a laboratory setup was used that allows extraction when the CO2 is supplied by a high-pressure plunger pump in the sub- and supercritical state using a heat pump. The pressure range is 3-15 MPa, temperatures 295–330 K, and the volumetric flow rate above the critical CO2 is 800–900 g. Experiments with ground seeds of melon and pumpkin showed that as a result of 4 sequentially performed extraction cycles on a single load with supercritical CO2 parameters ( 315–330 K; 3–7.5 MPa) the decrease in the mass of melon seeds was 90 g (pumpkins 80 g). During the total extraction time (2.5 hours), 20 kg of CO2 were pumped through the reactor (25 l at 290 K and 6.8 MPa), while the average oil content in the extract was 4 g per 1 kg of CO2 (3.0 g per 1 l of SС-CO2) In experiments with jida flowers, the maximum amount of solid extractable substance (2% by weight of the raw material) was obtained at a temperature in the extractor of 308 K and a pressure of 7.5 MPa. Upon extraction under critical conditions in collection 2, the liquid phase was absent; only a yellow-green paste was released in it. According to the results of experiments with mint leaves, the maximum yield of a greenish liquid was observed at T = 315 K and P = 4 MPa., Mulberry - at T = 306 K and P = 6.0 MPa. The results of the extraction of oils and extracts from ground seeds of melon, pumpkin and licorice roots, as well as mint leaves, mulberries and jida flowers confirm that the maximum yield of the extracted substance is achieved with supercritical CO2 parameters in the extractor (310 K, 7.5 MPa). When liquid CO2 is extracted (300 K and 6-8 MPa), up to 2% of a yellow substance is extracted, which does not differ in appearance from a supercritical extract.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1406 ◽  
Author(s):  
Muhammad Modassar A. N. Ranjha ◽  
Shafeeqa Irfan ◽  
José M. Lorenzo ◽  
Bakhtawar Shafique ◽  
Rabia Kanwal ◽  
...  

Traditional extraction techniques have lost their optimum performance because of rising consumer demand and novel technologies. In this regard, several techniques were developed by humans for the extraction of plant materials from various indigenous sources, which are no longer in use. Many of the techniques are not efficient enough to extract maximum plant material. By this time, evolution in extraction has led to development of various techniques including microfiltration, pulsed electric fields, high pressure, microwave assistance, enzyme assistance, supercritical fluid, subcritical fluid and ultrasonication. These innovations in food processing/extraction are known as “Green Food Processing”. These technologies were basically developed by focusing on three universal parameters: simplicity, energy efficiency and economy. These green technologies are practical in a number of different food sectors, mostly for preservation, inhibition of microorganisms, inactivation of enzymes and extraction of plant material. Like the others, ultrasonication could also be used for the said purposes. The primary objective of this review is to confine the potential use of ultrasonication for extraction of oils, pectin and phytochemicals by reviewing the literature systematically.


Author(s):  
Jelena Lazarevic ◽  
Jadranka Lukovic ◽  
Sreten Terzic ◽  
Milan Jockovic ◽  
Lana Zoric ◽  
...  

The aim of this research is to characterize wild annual sunflowers on the basis of achene micro-morphology. Plant material was grown up on an experimental field of the Institute of Field and Vegetable Crops in Novi Sad during 2015. Achene samples were hand-collected at the time of physiological maturity. Morphological measurements of achenes were performed using stereoscopic microscope Leica MZ16 with Leica DFC 320 Camera. The micro-morphological diversity of achenes was assessed using scanning electron microscopy (SEM). Obtained results indicated the presence of some quantitative and qualitative differences in achene characteristics among analyzed species, such as in their size, color, carpopodium and stylopodium shape, and distribution of trichomes on the achene surface. The carpopodium of examined species was asymmetrical at the maturity. Differences in the cuticle and wax ornamentation in different parts of the achenes, on the anticlinal walls of epidermal cells, were identified. The SEM analysis revealed the presence of non-glandular, multicellular bi-seriate trichomes (twin hairs) on the achene surface. This trichome type consisted of two elongated, parallel cells of different length. Considering the distribution of trichomes among the apical, median and basal regions of the fruit, most of the species demonstrated greater trichome density in the apical part.


2021 ◽  
Author(s):  
Lorenzo Santorelli ◽  
Toby Wilkinson ◽  
Ronke Abdulmalik ◽  
Yuma Rai ◽  
Christopher J. Creevey ◽  
...  

AbstractHoney bees use plant material to manufacture their own food. These insect pollinators visit flowers repeatedly to collect nectar and pollen, which are shared with other hive bees to produce honey and beebread. While producing these products, beehives accumulate a tremendous amount of microbes, including bacteria that derive from plants and different parts of the honey bees’ body. In this study, we conducted 16S rDNA metataxonomic analysis on honey and beebread samples that were collected from 15 beehives in the southeast of England in order to quantify the bacteria associated with beehives. The results highlighted that honeybee products carry a significant variety of bacterial groups that comprise bee commensals, environmental bacteria and pathogens of plants and animals. Remarkably, this bacterial diversity differs amongst the beehives, suggesting a defined fingerprint that is affected, not only by the nectar and pollen gathered from local plants, but also from other environmental sources. In summary, our results show that every hive possesses their own distinct microbiome, and that honeybee products are valuable indicators of the bacteria present in the beehives and their surrounding environment.


2020 ◽  
Vol 12 (9) ◽  
pp. 3651
Author(s):  
Xiaofei Chen ◽  
Jianhua Tong ◽  
Yi Su ◽  
Langtao Xiao

Chromium is one of the major pollutants in water and soil. Thus, it is urgent to develop a new method for chromium removal from the environment. Phytoremediation is a promising approach for heavy metal pollution recovery. As a perennial giant grass with a fast growth rate, Pennisetum sinese has been widely used as livestock feed, mushroom culture medium and biomass energy raw material. Interestingly, we have found a high adsorption capacity of P. sinese for chromium. P. sinese was treated with different concentrations of chromium for 15 days. Results showed that P. sinese plantlets grew well under low concentrations (less than 500 μM) of chromium (VI). The plantlet growth was inhibited when treated with high concentrations of chromium (more than 1000 μM). Up to 150.99 and 979.03 mg·kg−1 DW of chromium accumulated in the aerial part and root, respectively, under a treatment of 2000 μM Cr. The bioaccumulation factor (BCF) of P. sinese varied from 10.87 to 17.56, and reached a maximum value at the concentration of 500 μM. The results indicated that P. sinese showed strong tolerance and high accumulation capability under Cr stress. Therefore, the chromium removal potential of P. sinese has a great application prospect in phytoremediation.


Foods ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1059 ◽  
Author(s):  
Aleksei Kaleda ◽  
Karel Talvistu ◽  
Martti Tamm ◽  
Maret Viirma ◽  
Julia Rosend ◽  
...  

Plant materials that are used for the production of extruded meat analogs are often nutritionally incomplete and also contain antinutrients, thus there is a need to explore alternative plant proteins and pre-treatments. This study demonstrates application of phytase and fermentation to a pea-oat protein blend with a good essential amino acid profile and subsequent texturization using extrusion cooking. Enzymatic treatment reduced the content of antinutrient phytic acid by 32%. Extrusion also degraded phytic acid by up to 18%, but the effect depended on the material. Differences in physicochemical, sensorial, and textural properties between untreated and phytase-treated extruded meat analogs were small. In contrast, fermented material was more difficult to texturize due to degradation of macromolecules; physicochemical and textural properties of extrudates were markedly different; sensory analysis showed enhancement of flavor, but also detected an increase in some unwanted taste attributes (bitterness, cereal and off-taste). Phytic acid was not degraded by fermentation. Analysis of volatile compounds showed extrusion eliminated volatiles from the raw material but introduced Maillard reaction products. Overall, phytase treatment and fermentation demonstrated the potential for application in extruded meat analogs but also highlighted the necessity of optimization of process conditions.


2020 ◽  
Vol 169 ◽  
pp. 02006
Author(s):  
Gennady Kalabin ◽  
Vasilii Vasil’ev ◽  
Vasilii Ivlev ◽  
Vasilii Babkin

Environmental monitoring and assessment of the prospects for extracting biologically active substances (BAS) from various types of plant biomass requires the development of simple and fast methods for measuring their content in raw materials. A new approach for measuring the content of various flavonoids groups in plant raw material using 1H NMR spectroscopy has been developed, which allows to characterize its resource capabilities and study the effects on their composition different environmental factors without complex sample preparation and standard samples.


2013 ◽  
Vol 864-867 ◽  
pp. 390-393
Author(s):  
Zhi Kai Zhuang ◽  
Ming Fu Li ◽  
Jun Yan He ◽  
Jin Zhang

To determine the the fiber fineness in different parts of the old and young leaves. the pineapple leaf fiber of smooth cayenne was used as raw material, The results showed that, the length of fiber extracted from the old leaves of smooth cayenne pineapple ranged from 80 cm to 100 cm, and the average fiber fineness of the the tip and root were 14.40 dtex and 18.53 dtex, respectively. While the length of fiber extracted from the young leaves of smooth cayenne pineapple ranged from 50 cm to 70 cm, and the average fiber fineness of the the tip and root were 13.27 dtex and 14.77 dtex, respectively. Variance analysis reveals that the fiber fineness of root and tip in the old pineapple leaf showed significant difference (P<0.05) in smooth cayenne pineapple.


Ecology ◽  
2014 ◽  
Author(s):  
Danny J. Gustafson ◽  
Alexis Gibson

Ecological restoration is most commonly described as the process of aiding in the recovery of a damaged or destroyed system. In many cases, restoration may not be possible when self-sustaining populations, functions, and trajectories cannot be maintained due to the type of disturbance sustained by a site; in these cases, revegetation or remediation are more achievable goals. The definition of ecological restoration has been expanded to incorporate scientific inquiry into the process of the recovery of a natural range of ecosystem composition, structure, and dynamics. Ecological restoration research spans different levels of organization from genes to ecosystems. Genetic considerations are fundamental to the success of ecological restoration, and considerations of this issue will impact choices from seed source selection to genetic control of ecosystem services. A major decision for restorationists is the use of local versus nonlocal plant material, as well as the mixing of source populations; ideally, these choices can be based on sound population genetic, ecological, and evolutionary theory research. Ultimately, selection of plant material to be used in ecological restoration is driven by the specific project goals, availability and quality of plant materials, site conditions, and scale of the project. Beyond the local versus nonlocal selection issue, genetic issues related to small population dynamics, gene flow in the modern landscape, and gene expression affecting community structure and ecosystem functions can affect the success of ecological restoration activities. This article focuses primarily on plants; however, issues related to genetics of small populations (inbreeding and outbreeding depression, founder effects, and fitness consequences of reduced genetic variation) are important considerations for animal species too. The readings contained within this bibliography include: Ecotypic Variation, Seed Provenance for Restoration, Seed Transfer Zones for Restoration, Seed Provenance for Revegetation, Life History Traits, Moving beyond Neutral Markers, Inbreeding Depression, Outbreeding Depression, Founder Effects, Fitness Consequences of Reduced Genetic Variation, Community and Landscape Genetics, Testing Genotypic Effects on Community and Ecosystem Processes, Evaluating Success, and Genetic Composition and Diversity in Restored Populations.


Sign in / Sign up

Export Citation Format

Share Document