scholarly journals Towards a sustainable approach for the development of biodiesel microalgae, Closterium sp.

Author(s):  
Nuttapong Saetang ◽  
Sawitree Tipnee

As fossil fuels are the principal source for the automobile and energy sectors, global warming and a rapid decrease in their availability are seen. Alternative fuels that are sustainable, renewable, and eco-friendly are widely investigated in order to maintain an aesthetic environment and combat fossil fuel depletion. Biofuels have the ability to both reduce pollution and provide energy. This study focuses on the extraction of oil from freshwater microalgae, Closterium sp. algae using the Soxhlet extraction process for biodiesel production. Oils are extracted from dry microalgae biomass and used in biodiesel production using solvent (hexane and acetone) extraction. With the help of solvents and catalysts, the extracted oil undergoes transesterification, which transforms it to biodiesel. Closterium sp. oil extraction using hexane and acetone yielded 7.8 and 5.6 g, respectively, as well as biodiesel was achieved 6.4 and 4.1 g. In the near future, this would be a revolutionary approach to produce cost-effective biodiesel from microalgae. Moreover, in this research article, Closterium sp. biotechnology for biodiesel production developments and prospects are discussed.

2007 ◽  
Vol 6 (1) ◽  
pp. 02
Author(s):  
J. V. C. Vargas

Fossil fuels are currently recognized as unsustainable because of depleting supplies and the contribution of these fuels to the accumulation of carbon dioxide in the environment. Therefore, renewable, carbon neutral, alternative fuels are necessary for environmental and economic sustainability. Several countries have been considering the use of alternative fuels derived from agriculture. In that context, ethanol derived from sugar-cane and/or corn crops, and biodiesel derived from oil crops are potential renewable and carbon neutral alternatives to fossil fuels. Unfortunately, fuel from crops, waste and animal fat cannot realistically satisfy even a small fraction of the existing global demand for fuels. In Brazil, the government has been subsiding ethanol from sugar-cane crops for more than 30 years, and together with research investment on oil off-shore exploration, the initiative made possible for the country, at least for the moment, to become energy self sufficient, but due to oil supplies depletion, that scenery will change in the near future. Another limiting factor is cost. For example, the economic aspect of biodiesel production limits its development and large-scale use. Biodiesel usually costs almost twice the price per liter of conventional diesel fuel, currently in the US.Apart from economic aspects, it is clear that biofuel production technology needs to be improved to meet global fuel demand rate. One possible direction is the use of microalgae, that appear to be the only source of renewable biodiesel that is capable of meeting the diesel fuel global demand. Like plants, microalgae use sunlight to produce oils but they do so more efficiently than crop plants. Oil productivity of many microalgae greatly exceeds the oil productivity of the best producing oil crops.Approaches for making microalgal biodiesel economically competitive therefore need to be developed.The mission of Engenharia Térmica is to document the scientific progress in areas related to energy, particularly oil and renewables. We are confident we will continue to receive articles’ submissions that help enable sustainable energy solutions in the near future.


2018 ◽  
Vol 3 (1) ◽  
pp. 50-60 ◽  
Author(s):  
Vânia Novais Pôjo

The continuous reliance on fossil fuels is unsustainable, due to the depletion of global reserves and the greenhouse gas emissions associated with their use. Therefore, there are vigorous research initiatives intended to develop renewable alternatives. Microalgae are a promising alternative for biodiesel production and have received increasing attention during the last few decades. However, is not yet sufficiently cost-effective to compete with petroleum-based conventional fuels. This happens essentially because of downstream processing – harvesting microalgae biomass and extraction of lipids are two of the most expensive processes from the overall process. Harvesting, drying, cell disruption, oil extraction and transesterification (into biodiesel) are highlighted processes in this review article. The techniques associated with each process present advantages and handicaps that are here discussed. Improvements that will directly affect the final production costs of microalgal biomass-based biofuels are also proposed.


2021 ◽  
Vol 13 (2) ◽  
pp. 788
Author(s):  
Zulqarnain ◽  
Muhammad Ayoub ◽  
Mohd Hizami Mohd Yusoff ◽  
Muhammad Hamza Nazir ◽  
Imtisal Zahid ◽  
...  

Dependence on fossil fuels for meeting the growing energy demand is damaging the world’s environment. There is a dire need to look for alternative fuels that are less potent to greenhouse gas emissions. Biofuels offer several advantages with less harmful effects on the environment. Biodiesel is synthesized from the organic wastes produced extensively like edible, non-edible, microbial, and waste oils. This study reviews the feasibility of the state-of-the-art feedstocks for sustainable biodiesel synthesis such as availability, and capacity to cover a significant proportion of fossil fuels. Biodiesel synthesized from oil crops, vegetable oils, and animal fats are the potential renewable carbon-neutral substitute to petroleum fuels. This study concludes that waste oils with higher oil content including waste cooking oil, waste palm oil, and algal oil are the most favorable feedstocks. The comparison of biodiesel production and parametric analysis is done critically, which is necessary to come up with the most appropriate feedstock for biodiesel synthesis. Since the critical comparison of feedstocks along with oil extraction and biodiesel production technologies has never been done before, this will help to direct future researchers to use more sustainable feedstocks for biodiesel synthesis. This study concluded that the use of third-generation feedstocks (wastes) is the most appropriate way for sustainable biodiesel production. The use of innovative costless oil extraction technologies including supercritical and microwave-assisted transesterification method is recommended for oil extraction.


Khazanah ◽  
2020 ◽  
Vol 12 (2) ◽  
Author(s):  
Tiara Nur Azizah ◽  
◽  
Alya Putri Ramadhanty ◽  
Nadya Feranika ◽  
◽  
...  

Indonesia has entered an energy emergency phase, proven that Indonesia is no longer a surplus oil producer due to the productivity of the wells decrease over the years and the pattern of people's consumption of fossil fuels has been exceeding the production capacity. Therefore, we need the right solution to overcome this problem, which is developing biodiesel as renewable energy based on microalgae oil. The microalgae used in this research is the consortium of microalgae Botryococcus braunii and Dunaliella sp. Microalgae were cultivated and harvested through the dewatering process with 1 g naoh/1 L water concentration. Water contents of cultivated Botryococcus braunii are 60.2505% while Dunaliella sp. Is 64.5002%. The oil from microalgae is obtained by extracted dry microalgae through the soxhlet extraction (leaching) method with mixed solvent n-hexane and ethanol as the co-solvent using a variety of solvent ratio 2:1 and 3:1. Pure microalgae consortium oil separated from the solvent using the distillation process then analyzed with GC-FID. The analysis result is trans-linoleic acid is the most dominant fatty acid contained in this oil. Transesterification process with cao (1.5% of oil weight) as a catalyst. The results obtained from this study are the oil yield 72% extracted with a solvent mixture of n-hexane and ethanol 2:1 and 60.4% for 3:1. The biodiesel synthesis resulted in the amount of yield obtained from the solvent ratio 2:1 extraction is 94.3%, while with solvent ratio 3:1 is 79.2%. The quality of both biodiesels has met the requirements of SNI 7182:2015 and ASTM D7467, except the density of biodiesel with extraction solvent composition 3:1 which is below the standard. Therefore, the best biodiesel quality is obtained from microalgae consortium’s oil with the composition of extraction solvent 2:1.


2020 ◽  
Author(s):  
Rehab Metwally ◽  
hassan Abu Hashish ◽  
Haitham Abd El-Samad ◽  
Mostafa Awad ◽  
Ghada Kadry

Abstract Background: The world depends almost on fossil fuels. This leads to depletion of oil and an increase in environmental pollution. Therefore, the researchers search to find alternative fuels. Waste cooking oil (WCO) was selected as feedstock for biodiesel production to eliminates the pollution problems. The agricultural waste is very big and without cost, this leads to the use of the rice straw in preparing a catalyst for biodiesel production. Results: The reusability of the acidic catalyst confirmed that the conversion efficiency was high until after 8 cycles of the production. The highest conversion efficiency of the converting WCO extended to 90.38% with 92.5% maximum mass yield and methyl ester content 97.7% wt. at the optimized conditions. The result was indicating that B15 is the best blend for thermal efficiency and specific fuel consumption. All emission concentrations decrease with increasing the engine load, especially for B15 fuels compared to the diesel oil.Conclusion: The novelty of this paper is assessing the methyl esters from the local WCO as an alternative fuel for diesel engines using a heterogeneous catalyst based on the agricultural waste. The performance of the diesel engines and its exhaust emissions have been experimentally investigated with the produced biodiesel of WCO as a blend (B10, B15, and B20) compared to the diesel.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Shihong Liu ◽  
Husam A. Abu Hajar ◽  
Guy Riefler ◽  
Ben J. Stuart

Microalgae are one of the most promising feedstocks for biodiesel production due to their high lipid content and easy farming. However, the extraction of lipids from microalgae is energy intensive and costly and involves the use of toxic organic solvents. Compared with organic solvent extraction, supercritical CO2(SCCO2) has demonstrated advantages through lower toxicity and no solvent-liquid separation. Due to the nonpolar nature of SCCO2, polar organic solvents such as methanol may need to be added as a modifier in order to increase the extraction ability of SCCO2. In this paper, pilot scale lipid extraction using SCCO2was studied on two microalgae species:Spirulinasp. andSchizochytriumsp. For each species, SCCO2extraction was conducted on 200 g of biomass for 6 h. Methanol was added as a cosolvent in the extraction process based on a volume ratio of 4%. The results showed that adding methanol in SCCO2increased the lipid extraction yield significantly for both species. Under an operating pressure of 4000 psi, the lipid extraction yields forSpirulinasp. andSchizochytriumsp. were increased by 80% and 72%, respectively. It was also found that a stepwise addition of methanol was more effective than a one-time addition. In comparison with Soxhlet extraction using methylene chloride/methanol (2:1, v/v), the methanol-SCCO2extraction demonstrated its high effectiveness for lipid extraction. In addition, the methanol-SCCO2system showed a high lipid extraction yield after increasing biomass loading fivefold, indicating good potential for scaling up this method. Finally, a kinetic study of the SCCO2extraction process was conducted, and the results showed that methanol concentration in SCCO2has the strongest influence on the lipid extraction yield.


2020 ◽  
Author(s):  
Mateus S. Amaral ◽  
Carla C.A. Loures ◽  
Fabiano L. Naves ◽  
Gisella L. Samanamud ◽  
Messias B. Silva ◽  
...  

The search for a renewable source as an alternative to fossil fuels has driven the research on new sources of biomass for biofuels. An alternative source of biomass that has come to prominence is microalgae, photosynthetic micro-organisms capable of capturing atmospheric CO2 and accumulating high levels of lipids in their biomass, making them attractive as a raw material for biodiesel synthesis. Thus, various studies have been conducted in developing different types of photobioreactors for the cultivation of microalgae. Photobioreactors can be divided into two groups: open and closed. Open photobioreactors are more susceptible to contamination and bad weather, reducing biomass productivity. Closed photobioreactors allow greater control against contamination and bad weather and lead to higher rates of biomass production; they are widely used in research to improve new species and processes. Therefore, many configurations of closed photobioreactors have been developed over the years to increase productivity of microalgae biomass.


In the country and the world, it has become aware about the characteristics of non-renewable fossil fuels, and the high use of transport vehicles that use these fuels, in addition to industries and other sectors; these have boosted global research on alternative fuels, especially those derived from biomass. Peru in the change of its energy matrix has taken actions that allow it to increase the use of renewable energies such as biodiesel and bioethanol. Currently there are other proposals such as biorefineries that allow the greatest use of their natural resources. The investigations that have been carried out since 2010 have allowed us to have a technological contribution for the sustainable production of biodiesel in Peru.


Author(s):  
Veljko Đukić

Using renewable energy is in line with the global strategy of sustainable development. The use of biofuels in transport contributes to increasing security of supply and reducing dependence of the transport sector on oil, reducing the share of greenhouse gas emissions from road transport and sustainable development of urban areas. The advantage of biodiesel in comparison to other alternative fuels can be seen in use in existing vehicles without or with minor modification of existing motors, depending on the concentration of biofuels in combination with fossil fuels. This paper discusses the possibilities of reducing the air pollution by using biodiesel, pollutants arising as a result of combustion of fuel in internal combustion engines, as well as the possibility of using waste cooking oil to produce biodiesel. The presented results show the reduction of air pollution using biodiesel as an alternative fuel, as well as the possibilities of solving the problem of wasting edible oil by using it for biodiesel production


2019 ◽  
Vol 35 (4) ◽  
pp. 1377-1383
Author(s):  
Y.C. Wong ◽  
R. Shahirah

Currently, the renewable feedstock is the most needed worldwide. Microalgae are promising raw materials for supplying biofuels due to the depletion of fossil fuels. The microalgae found were mostly consists of freshwater algae. The aim of this research is to study the effect of different solvents and ratio using Soxhlet extraction method. Many parameters were introduced in this study in order to enhance the lipid production of microalgae. Lipid content of algae oil production known as Fatty acid that found was being analyzed. Different solvents used and ratio was expected to have different highest in lipid content. Chloroform, ethanol, and hexane were chosen as the solvents used. The best solvent for lipid production was the combination of different solvents and ratio. Data showed that 8% is the highest total oil extraction yield obtained from combination of chloroform and ethanol with a ratio (1:2). The compound and lipid content in algae oil are analyzed through Gas Chromatography Mass Spectrometer (GC-MS) analysis. Fatty acids have many benefits and also have interest preparation for health products. Green microalgae strain was being identified and cultured as future potential for biodiesel production. Significant of this study is to unveil the benefit of algae oil as sustainable future resources.


Sign in / Sign up

Export Citation Format

Share Document