scholarly journals Prevalence, characteristics and antibiogram profile of Escherichia coli O157:H7 isolated from raw and fermented (nono) milk in Benin City, Nigeria

2021 ◽  
Vol 22 (2) ◽  
pp. 223-233
Author(s):  
I.H. Igbinosa ◽  
C. Chiadika

Background: Most Escherichia coli strains are harmless commensals, but some serotypes can cause serious food poisoning in their hosts, and are infrequently responsible for product recalls due to food contamination. The present study was carried out to determine the occurrence of E. coli O157:H7 and other E. coli strains from raw and fermented (nono) milk in Benin City, Nigeria.Methodology: A total of 66 (33 raw and 33 nono) milk samples were obtained from retailers from 3 different stations in Aduwawa market, Benin City, Nigeria between January and June, 2017. Samples were analysed by cultural methods for faecal coliforms using M-Fc agar, E. coli using Chromocult coliform agar, and E. coli O157:H7 using sorbitol MacConkey agar supplemented with cefixime and potassium tellurite. Presumptive E. coli andE. coli O157:H7 isolates were confirmed by polymerase chain reaction (PCR) assay using specific primers. Antimicrobial susceptibility profile of confirmed isolates was performed using the Kirby-Bauer disk diffusion method, with zones of inhibition interpreted according to the guidelines of Clinical and Laboratory Standards Institute (CLSI). Data were  analysed using the SPSS version 21.0.Results: From the 66 nono and raw milk samples assessed in this study, all (100%) were phenotypically positive for E. coli O157:H7. A total of 19 E. coli O157:H7 and 41 other strains of E. coli were confirmed by PCR. The resistance profile of the 19 E. coli O157:H7 isolates showed 100% (19/19) resistance to penicillin G and ampicillin; 94.7% (18/19) to chloramphenicol; 89.5% (17/19) to erythromycin; and 78.9% (15/19) to sulfamethoxazole and oxytetracycline, while the sensitivity profile showed that 100% (19/19) E. coli O157:H7 isolates were sensitive to gentamicin and ofloxacin. The resistance profile of other 41 E. coli isolates showed 100% (41/41) resistance to penicillin G and ampicillin; 97.6% (40/41) to chloramphenicol; and 92.7% (38/41) to erythromycin, while 97.6% (40/41) were sensitive to  gentamicin and kanamycin. Ten E. coli O157:H7 isolates (52.6%) showed extensive drug resistance pattern to 11 antibiotics in 7  antimicrobial classes with multiple antibiotic resistance (MAR) index of 0.46.Conclusion: Findings from the present study clearly indicated that the safety and quality of fresh and fermented milk were not satisfactory and could be of public health concern. Key words: Nono, Escherichia coli; Pathotypes, Resistance index, Public health, Milk

2020 ◽  
Vol 6 (1) ◽  
pp. 13
Author(s):  
Nelson Phiri ◽  
Geoffrey Mainda ◽  
Mercy Mukuma ◽  
Ntazana N. Sinyangwe ◽  
Luke J. Banda ◽  
...  

Objective: Salmonella species and Escherichia coli are major bacterial enteropathogens of worldwide public health importance that cause devastating foodborne diseases, thereby contributing to increased human morbidity and mortality. Both pathogens have also been found to contribute towards the spread of antimicrobial resistance through the food chain, especially in poultry. This study aimed to determine the occurrence of antibiotic-resistant Salmonella spp. and E. coli in broiler chickens at farm level, abattoirs, and open markets in selected districts of Zambia.Methods: A cross-sectional study was undertaken in seven districts of Zambia to determine the resistance profiles of Salmonella spp. and E. coli obtained from broiler chickens at farms, abattoirs, and open markets. A total of 470 samples were collected which include; litter, cloacal swabs, and carcass swabs. Samples were inoculated into buffered peptone water and incubated for 24 hours then sub-cultured onto MacConkey and Xylose Lysine Deoxycholate agar plates. Identification of Salmonella spp. and E. coli was done using the API-20E kit and confirmation by 16S rDNA sequencing. Confirmed isolates were tested against a panel of 09 antibiotics using the Kirby-Bauer disc diffusion method and interpreted according to the Clinical Laboratory Standards Institute guidelines. Data analysis of the antibiotic sensitivity test results was done using WHONET 2018 software.Results: Overall, 4 Salmonella spp. and 280 E. coli were isolated. One of the Salmonella spp. was resistant to ampicillin (25%), amoxicillin/clavulanic acid (25%), and cefotaxime (25%). E. coli antibiotic resistance was highest to tetracycline (81.4%) and 100% susceptibility to imipenem. The antibiotic susceptibility profile revealed 75.7% (237/280) multidrug-resistant (MDR). The highest MDR profile was observed in 8.2% (23/280) isolates in which 6 out of the 9 classes of antibiotics tested were resistant. Out of the 280 isolates, 11.4% (32/280) exhibited Extensive Drug resistance (XDR).Conclusion: The study found antimicrobial resistance to E. coli and Salmonella spp. in market-ready broiler chickens which were resistant to important antibiotics and is of public health concern.


2021 ◽  
Vol 11 (3) ◽  
pp. 402-415
Author(s):  
Loubna Ghallache ◽  
Abdellah Mohamed-Cherif ◽  
Bernard China ◽  
Faiza Mebkhout ◽  
Nesrine Boilattabi ◽  
...  

Mastitis in cows is a major problem in dairy farms leading to a decrease in the quantity and quality of milk. The aim of the present study was to examine the association between the presence of Escherichia coli (E. coli) in milk and the subclinical mastitis, and to characterize the antibiotic resistance profiles of the isolated E. coli. In the current study, a total of 360 cow raw milk samples from three dairy farms of the region of Algiers were analyzed. The analysis period lasted from Spring 2017 to Winter 2019. The California Mastitis Test (CMT) was applied to detect subclinical mastitis. The E. coli strains were isolated from milk using conventional bacteriological methods. The antibiotic resistance profile of the isolated E. coli strains to 12 different antibiotics was tested using the disk diffusion method. On β-lactamase-producing strains, a double diffusion test was applied to identify the Extended-spectrum β-lactamase (ESBL) phenotype. Finally, the ctXx-M genes were amplified by PCR. Two-thirds (66.4%) of the milk samples were positive for the CMT test. A total of 97 E. coli strains were isolated from the milk samples, their resistance to antibiotics was tested, and 3.1% of the strains were resistant to trimethoprim-sulfamethoxazole, 6.2% to chloramphenicol, 12.3% to gentamicin, 13.4% to colistin, 23.3% to amoxicillin/clavulanate, 31.9% to kanamycin, 39.2% to enrofloxacin, 51.5% to cefotaxime, 52% to tetracycline, 57.7% to ampicillin, 74.3% to nalidixic acid, and 75.3% to amoxicillin. Furthermore, most of the E. coli strains (92.8%) were resistant to more than one antibiotic with a Multiple Antibiotic Resistance index ranging from 0 to 0.8. The 50 strains resistant to cefotaxime were analyzed for an ESBL phenotype. 39 of them (78%) were positive to the double-disk synergy test. Among the 39 ESBL positive strains, 27 (69.2%) were confirmed for the presence of a CTX-M gene by PCR. The present study showed that multiple drug-resistant E. coli, including ESBL-carriers, were frequently isolated from the milk of dairy cows in Algeria. The results underlined that the use of antibiotics on farms must be reasoned to avoid the spread of resistant strains in animals and human populations.


2020 ◽  
Author(s):  
Nelson Phiri ◽  
Geoffrey Mainda ◽  
Mercy Mukuma ◽  
Ntazana N. Sinyangwe ◽  
Luke John Banda ◽  
...  

AbstractSalmonella species and Escherichia coli are major bacterial enteropathogens of global public health importance that cause foodborne diseases, thereby contributing to increased human morbidity and mortality. Both pathogens have also been found to contribute towards the spread of antimicrobial resistance through the food chain, especially in poultry. The aim of this study was to determine the occurrence of antibiotic-resistant Salmonella sp. and E. coli in broiler chickens at farm level, abattoirs and open markets in selected districts of Zambia. A cross-sectional study was undertaken in seven districts of Zambia to determine the resistance profiles of Salmonella sp. and E. coli obtained from broiler chickens at farms, abattoirs and open markets. A total of 470 samples were collected, including litter, cloacal swabs and carcass swabs. Samples were inoculated into buffered peptone water, sub-cultured onto MacConkey and Xylose Lysine Deoxycholate agar plates. Identification of Salmonella sp. and E. coli was done using the API-20E kit and confirmation by 16S rDNA sequencing. Confirmed isolates were tested against a panel of 10 antibiotics using the Kirby-Bauer disc-diffusion method and interpreted according to the Clinical Laboratory Standards Institute guidelines. Analysis of the antibiotic susceptibility test results was done using WHONET 2018 software. Overall, 4 Salmonella spp. and 280 E. coli were isolated. One of the Salmonella sp. was resistant to ampicillin (25%), amoxicillin/clavulanic acid (25%) and cefotaxime (25%). E. coli antibiotic resistance was highest to tetracycline (81.4%) and lowest to imipenem (0.7%). The antibiotic susceptibility profile revealed 55% (154/280) multidrug resistant E. coli, with the highest multidrug resistance profile (20.7%) in the ampicillin-tetracycline-trimethoprim/sulfamethoxazole drug combination. Furthermore, 4.3% (12/280) of the isolates showed Extensive Drug resistance. The levels of antimicrobial resistance to E. coli and Salmonella observed in market-ready chickens is of public health concern.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Pouya Reshadi ◽  
Fatemeh Heydari ◽  
Reza Ghanbarpour ◽  
Mahboube Bagheri ◽  
Maziar Jajarmi ◽  
...  

Abstract Background Transmission of antimicrobial resistant and virulent Escherichia coli (E. coli) from animal to human has been considered as a public health concern. This study aimed to determine the phylogenetic background and prevalence of diarrheagenic E. coli and antimicrobial resistance in healthy riding-horses in Iran. In this research, the genes related to six main pathotypes of E. coli were screened. Also, genotypic and phenotypic antimicrobial resistance against commonly used antibiotics were studied, then phylo-grouping was performed on all the isolates. Results Out of 65 analyzed isolates, 29.23 % (n = 19) were determined as STEC and 6.15 % (n = 4) as potential EPEC. The most prevalent antimicrobial resistance phenotypes were against amoxicillin/clavulanic acid (46.2 %) and ceftriaxone (38.5 %). blaTEM was the most detected resistance gene (98.4 %) among the isolates and 26.15 % of the E. coli isolates were determined as multi-drug resistant (MDR). Three phylo-types including B1 (76.92 %), A (13.85 %) and D (3.08 %) were detected among the isolates. Conclusions Due to the close interaction of horses and humans, these findings would place emphasis on the pathogenic and zoonotic potential of the equine strains and may help to design antimicrobial resistance stewardship programs to control the dissemination of virulent and multi-drug resistant E. coli strains in the community.


2019 ◽  
Author(s):  
Elizabeth Muligisa Muonga ◽  
Geoffrey Mainda ◽  
Mercy Mukuma ◽  
Geoffrey Kwenda ◽  
Bernard Hang'ombe ◽  
...  

Abstract Background Antimicrobial resistance (AMR) of foodborne pathogens is of public health concern, especially in developing countries like Zambia. This study was undertaken to determine the resistance profiles of Escherichia coli ( E. coli ) and Salmonella isolated from dressed broiler chickens purchased from open markets and supermarkets in Zambia.Results A total of 189 E. coli and five Salmonella isolates were isolated. Identification and confirmation of the isolates was done using Analytical Profile Index (API 20E) (Biomerieux ® ) and 16S rRNA sequencing. Antimicrobial susceptibility tests (AST) were performed using the Kirby Bauer disk diffusion technique using a panel of 10 different antibiotics and multiplex PCR was used to determine the presence of three target genes encoding for resistance: tetA, Sul1 and CTXM. AST results were entered and analyzed in WHONET 2018 software. A total of 189 E. coli and five Salmonella isolates were identified. Among the E. coli isolates, Tetracycline recorded the highest resistance of 79.4%, followed by Ampicillin 51.9%, Trimethoprim/Sulfamethoxazole 49.7%, Nalidixic Acid 24.3%, Chloramphenicol 16.4%, Cefotaxime 16.4%, Ciprofloxacin 10.1%, Colistin 7.4%, Amoxicillin/Clavulanic acid 6.9%, and Imipenem 1.1%. Two of the five Salmonella isolates were resistant to at least one antibiotic. Forty- seven (45.2%) of the isolates possessed at least one of the targeted resistance genes.Conclusion This study has demonstrated the presence of AMR E. coli and Salmonella on raw broiler chickens from both open markets and supermarkets. Such resistance is of public health concern and measures need to be put in place to regulate the use of these antimicrobials in poultry production.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Neha Giri ◽  
Anchal Lodhi ◽  
Devendra Singh Bisht ◽  
Suvarna Bhoj ◽  
Deepak Kumar Arya

Researchers have encountered new challenges with the discovery of multiple drug resistance in microbes. Currently, multidrug resistant bacteria are considered a major public health concern and an emerging global epidemic. Presence of Escherichia coli in water is used as a faecal pollution measure. In this study E. coli isolates were collected from 20 sample collection sites at Lake Nainital. 20 E. coli isolates, 1 from each sample collection sites, were examined for their antibiotic response patterns against a panel of widely used 15 antibiotics. The result of this study showed 100% resistance to Penicillin G followed by Erythromycin (80%). All isolates (100%) were found susceptible for Gentamycin. The susceptibilities for Chloramphenicol and Co-trimoxazaole were found next to Gentamycin as 90 and 85% respectively. Multiple antibiotic resistance (MAR) index was also determined. 0.73 MAR index was observed as highest in 1 isolate. 13 out of 20 isolates had more than 0.2 MAR indices. The result reveals the origin of E. coli isolates from an area of high antibiotics use.


2019 ◽  
Vol 40 (1) ◽  
pp. 163 ◽  
Author(s):  
Leandro Parussolo ◽  
Ricardo Antônio Pilegi Sfaciotte ◽  
Karine Andrezza Dalmina ◽  
Fernanda Danielle Melo ◽  
Ubirajara Maciel Costa ◽  
...  

The serrano artisanal cheese is a typical product from South region of Brazil, which is produced by skilled cheesemakers using raw milk. The contamination of this food by Escherichia coli has a great impact on public health, since it could threat the consumers’ health. The study evaluated the presence of virulence genes, antimicrobial susceptibility profiles and bofilm-production ability of Escherichia coli isolates obtained from raw milk and artisanal cheese produced in Southern Brazil. A total of 117 isolates of E. coli were characterized by multiplex PCR to detect the following virulence genes: eae for enteropatogenic E. coli (EPEC), lt and st for enterotoxigenic E. coli (ETEC), stx for shiga toxin-producing E. coli (STEC), stx and eae for enterohemorrhagic E. coli (EHEC), ipaH for enteroinvasive E. coli (EIEC) and aggR for enteroaggregative E. coli (EAEC). In addition, antimicrobial susceptibility profile to 22 antimicrobial agents was also performed by disk diffusion method, and we searched for extended-spectrum beta-lactamases (ESBL) and/or carbapenemase- producing isolates. Isolates that were positive for ESBL and carbapenemase were further investigated for the presence of the genes: blaTEM, blaSHV, blaOXA, blaCTX-M, for ESBL and blaOXA-48 for carbapenemase. Further, isolates had their ability to form biofilms investigated by the red Congo agar method. Virulence genes of E. coli were identified in 21.37% of the tested isolates, which were classified as EPEC (the most prevalent pathotype) and ETEC or EAEC. Ten (8.55%) of the total studied E. coli isolates revealed a multidrug-resistant profile, since they were resistant to three or more antimicrobial classes; whereas four isolates (3.42%) were classified as ESBL-producers and showed the presence of blaTEM gene. None of the isolates exhibited carbapenemase activity nor did they carry carbapenemase genes. From the total of E. coli isolates, 79 (67.52%) were considered potential biofilm producers. These results address a serious public health issue, since artisanal cheeses pose a risk to consumers’ health, since may be sources of dissemination of diarrheogenic E. coli, that can cause from subclinical to severe and fatal infections in children and adults, and also emphasize the need to improve adaptations/adjustments in the manufacturing processes of these products.


Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 396 ◽  
Author(s):  
Michaela Sannettha van den Honert ◽  
Pieter Andries Gouws ◽  
Louwrens Christiaan Hoffman

Studies have shown that antibiotic resistance among wild animals is becoming a public health concern, owing to increased contact and co-habitation with domestic animals that, in turn, results in increased human contact, indirectly and directly. This type of farming practice intensifies the likelihood of antibiotic resistant traits in microorganisms transferring between ecosystems which are linked via various transfer vectors, such as rivers and birds. This study aimed to determine whether the practice of wildlife supplementary feeding could have an influence on the antibiotic resistance of the bacteria harboured by the supplementary fed wildlife, and thus play a potential role in the dissemination of antibiotic resistance throughout nature. Escherichia coli and Enterococcus were isolated from the faeces of various wildlife species from seven different farms across South Africa. The Kirby-Bauer disk diffusion method was used according to the Clinical and Laboratory Standards Institute 2018 guidelines. The E. coli (F: 57%; N = 75% susceptible) and Enterococcus (F: 67%; N = 78% susceptible) isolates from the supplementary fed (F) wildlife were in general, found to be more frequently resistant to the selection of antibiotics than from those which were not supplementary fed (N), particularly towards tetracycline (E. coli F: 56%; N: 71%/Enterococcus F: 53%; N: 89% susceptible), ampicillin (F: 82%; N = 95% susceptible) and sulphafurazole (F: 68%; N = 98% susceptible). Interestingly, high resistance towards streptomycin was observed in the bacteria from both the supplementary fed (7% susceptible) and non-supplementary fed (6% susceptible) wildlife isolates. No resistance was found towards chloramphenicol and ceftazidime.


2020 ◽  
Author(s):  
Liming Jiang ◽  
Rui Zheng

Abstract Background: Escherichia coli is the most important and widespread bacteria in worldwide, which mainly found in contaminated food, human and animal faeces. Unfortunately, Some of E. coli strains are multidrug-resistant (MDR) pathogen leading significant public health concern globally. Biofilm is a multicellular community of microorganisms. Phages and their derivatives are ideal candidates for replacing or compensating for antibiotic problems in the future. Method: Here, we aimed to isolation and characterization of Escherichia coli phage and research its bactericidal activity that individually or collaborative with kanamycin sulfateResults: In this study, three virulent phages Flora, T4 and WJ were isolated from the laboratory and drug sample in Wuxi, China. It’s belonged to the Myoviridae family and optimum temperature is 42 ℃, optimum pH= 7, optimum MOI is 0.0001 and the genome size of Flora, T4 and WJ were 168, 909, 168903 and 168, 900 bp respectively. Flora has two exonuclease, whereas T4 and WJ have only one. Antibiotics have better bactericidal activity than phages in a low concentration medium of bacteria, nonetheless, phages have better bactericidal activity than antibiotics in a high concentration of bacteria, and that, collaboration of phages and antibiotics have better bactericidal activity effect than alone of phages or antibiotics in a low concentration medium of bacteria. Conclusion: The excellent performance of phage Flora for its therapeutic potential on clinic. The data of this study provided the strong evidence that the application of phage could reduce the growth and biofilm of E. coli that are important to maintain public health. Keywords: Escherichia coli, phage, lytic spectrum, biofilm, antibiotic


2020 ◽  
Author(s):  
Elizabeth Muligisa Muonga ◽  
Geoffrey Mainda ◽  
Mercy Mukuma ◽  
Geoffrey Kwenda ◽  
Bernard Hang'ombe ◽  
...  

Abstract BackgroundAntimicrobial resistance (AMR) of foodborne pathogens is of public health concern, especially in developing countries such as Zambia. This study was undertaken to determine the antimicrobial resistance profiles of Escherichia coli ( E. coli ) and Salmonella isolated from raw retail broiler chicken carcasses purchased from open and supermarkets in Zambia.ResultsA total of 189 E. coli and five Salmonella isolates were isolated. Identification and confirmation of the isolates were done using Analytical Profile Index (API 20E) (Biomerieux ® ) and 16S rRNA sequencing. Antimicrobial susceptibility tests (AST) were performed using the Kirby Bauer disk diffusion technique using a panel of 10 antibiotics. Multiplex PCR was used to determine the presence of three target genes encoding for resistance: tet A, Sul 1 and bla CTX-M . WHONET 2018 software was used to analyse AST results. The E. coli isolates were mostly resistant to tetracycline (79.4%), ampicillin (51.9%), and trimethoprim/sulfamethoxazole (49.7%). Two of the five Salmonella isolates were resistant to at least one antibiotic. Forty- seven (45.2%) of the 104 isolates that were screened for the presence of the resistant genes possessed at least one of the targeted resistance genes.ConclusionThis study has demonstrated the presence of AMR E. coli and Salmonella on raw retail broiler chicken carcasses from open and supermarkets, which is of public health concern.


Sign in / Sign up

Export Citation Format

Share Document