scholarly journals Radial and vertical velocity field in a steady state symmetric tropical storm

MAUSAM ◽  
2021 ◽  
Vol 48 (2) ◽  
pp. 123-134
Author(s):  
J.C. MANDAL

ABSTRACT. A method to construct a consistent structure of steady state symmetric tropical storms from a few known values of temperature anomaly in the centre and around it has been developed. The role of kinematic eddy coefficient of viscosity in producing the transverse circulation in a tropical storm has been tested and discussed. The well known features and characteristics of a tropical storm, such as, eyewall, sinking motion, inside the eyewall, low-level radial inflow and high level outflow are well produced in the model. The computation shows that there is an increase of transverse circulation with increase of the magnitude of eddy coefficient. In the boundary layer, the vertical eddy coefficient plays more important role than the radial eddy coefficient; while in the upper layer the latter is much more important than the former. It has also been found that in absence of radial exchange coefficient, there can be no sinking motion in the central region of the storm. The magnitude of radial and vertical wind in the eye region is more sensitive to the variation of radial eddy coefficient. In addition to the eddy coefficients, transverse circulations also depend upon the tangential wind distribution above the boundary layer.    

2019 ◽  
Vol 7 (2) ◽  
pp. 28 ◽  
Author(s):  
Si Gao ◽  
Shengbin Jia ◽  
Yanyu Wan ◽  
Tim Li ◽  
Shunan Zhai ◽  
...  

The possible role of air–sea latent heat flux (LHF) in tropical cyclone (TC) genesis over the western North Pacific (WNP) is investigated using state-of-the-art satellite and analysis datasets. The authors conducted composite analyses of several meteorological variables after identifying developing and non-developing tropical disturbances from June to October of the period 2000 to 2009. Compared to the non-developing disturbances, increased LHF underlying the developing disturbances enhances boundary–layer specific humidity. The secondary circulation then transports more boundary–layer moisture inward and upward and, thus, induces a stronger moist core in the middle troposphere. Accordingly, the air in the core region ascends following a warmer moist adiabat than that in the environment and results in a stronger upper-level warm core, which is associated with a stronger near-surface tangential wind based on the thermal wind balance. This enlarges the magnitude and negative radial gradient of LHF and, thereby, further increases boundary–layer specific humidity. A tropical depression forms when the near-surface tangential wind increases to a certain extent as a result of the continuing positive feedback between near-surface wind and LHF. The results suggest an important role of wind-driven LHF in TC genesis over the WNP.


2014 ◽  
Vol 142 (1) ◽  
pp. 3-28 ◽  
Author(s):  
Neil T. Sanger ◽  
Michael T. Montgomery ◽  
Roger K. Smith ◽  
Michael M. Bell

Abstract An observational study of tropical cyclone intensification is performed using dropsondes, in situ flight-level data, satellite imagery, and Electra Doppler Radar (ELDORA) during the spinup of Tropical Storm Jangmi (2008) in the western North Pacific. This event was observed with research aircraft during the Tropical Cyclone Structure 2008 (TCS08) field experiment over the course of 3 days as Jangmi intensified rapidly from a tropical storm to a supertyphoon. The dropsonde analysis indicates that the peak azimuthally averaged storm-relative tangential wind speed occurs persistently within the boundary layer throughout the spinup period and suggests that significant supergradient winds are present near and just within the radius of maximum tangential winds. An examination of the ELDORA data in Tropical Storm Jangmi reveals multiple rotating updrafts near the developing eye beneath cold cloud top temperatures ≤−65°C. In particular, there is a 12-km-wide, upright updraft with a peak velocity of 9 m s−1 with collocated strong low-level (z < 2 km) convergence of 2 × 10−3 s−1 and intense relative vorticity of 4 × 10−3 s−1. The analysis of the corresponding infrared satellite imagery suggests that vortical updrafts are common before and during rapid intensification. The findings of this study support a recent paradigm of tropical cyclone intensification in which rotating convective clouds are important elements in the spinup process. In a system-scale view of this process, the maximum tangential wind is found within the boundary layer, where the tangential wind becomes supergradient before the air ascends into the eyewall updraft.


MAUSAM ◽  
2021 ◽  
Vol 43 (3) ◽  
pp. 259-268
Author(s):  
J.C. MANDAL

A model has been designed to study the surface boundary layer of a tropical storm. The numerical method consists of solving a two point boundary value problem for two systems of simultaneous non-linear differential equations by finite differences. A Stoke's stream function suitable to represent the flow both in interior and exterior regions of a tropical storm boundary layer has been developed. The advantage of the method is that the, boundary layer of the tropical storm can be studied starting from the outer region to the centre of the storm without neglecting non-linear terms. In addition, there IS no need for assumptions on the vertical profiles for tangential and radial velocities. The method is stable and converges within a few iterations. The flow above the friction layer is represented by a steady axisymmetric vortex in gradient balance. To investigate the effect of turbulence- on boundary layer characteristics, turbulence has been represented by four different variations of the eddy coefficient of viscosity with no slip boundary conditions. Computations have been performed 1aking 40-grid points in the vertical direction. It is observed that, if the eddy coefficient of viscosity is assumed to vary with the superimposed flow above the boundary layer, the solutions compare favourably well with observations. The solution also shows an outflow from the Inner core of the boundary layer which is necessary for creation of an eye of the storm.


2020 ◽  
Vol 77 (11) ◽  
pp. 3701-3720
Author(s):  
Dandan Tao ◽  
Richard Rotunno ◽  
Michael Bell

AbstractThis study revisits the axisymmetric tropical cyclone (TC) theory from D. K. Lilly’s unpublished manuscript (Lilly model) and compares it to axisymmetric TC simulations from a nonhydrostatic cloud model. Analytic solutions of the Lilly model are presented through simplifying assumptions. Sensitivity experiments varying the sea surface, boundary layer and tropopause temperatures, and the absolute angular momentum (M) at some outer radius in the Lilly model show that these variations influence the radial structure of the tangential wind profile V(r) at the boundary layer top. However, these parameter variations have little effect on the inner-core normalized tangential wind, V(r/rm)/Vm, where Vm is the maximum tangential wind at radius rm. The outflow temperature T∞ as a function of M (or saturation entropy s*) is found to be the only input that changes the normalized tangential wind radial structure in the Lilly model. In contrast with the original assumption of the Lilly model that T∞(s*) is determined by the environment, it is argued here that T∞(s*) is determined by the TC interior flow under the environmental constraint of the tropopause height. The present study shows that the inner-core tangential wind radial structure from the Lilly model generally agrees well with nonhydrostatic cloud model simulations except in the eyewall region where the Lilly model tends to underestimate the tangential winds due to its balanced-dynamics assumptions. The wind structure in temperature–radius coordinates from the Lilly model can largely reproduce the numerical simulation results. Though the Lilly model is based on a number of simplifying assumptions, this paper shows its utility in understanding steady-state TC intensity and structure.


2013 ◽  
Vol 70 (12) ◽  
pp. 3818-3837 ◽  
Author(s):  
Y. Qiang Sun ◽  
Yuxin Jiang ◽  
Benkui Tan ◽  
Fuqing Zhang

Abstract Through successful convection-permitting simulations of Typhoon Sinlaku (2008) using a high-resolution nonhydrostatic model, this study examines the role of peripheral convection in the storm's secondary eyewall formation (SEF) and its eyewall replacement cycle (ERC). The study demonstrates that before SEF the simulated storm intensifies via an expansion of the tangential winds and an increase in the boundary layer inflow, which are accompanied by peripheral convective cells outside the primary eyewall. These convective cells, which initially formed in the outer rainbands under favorable environmental conditions and move in an inward spiral, play a crucial role in the formation of the secondary eyewall. It is hypothesized that SEF and ERC ultimately arise from the convective heating released from the inward-moving rainbands, the balanced response in the transverse circulation, and the unbalanced dynamics in the atmospheric boundary layer, along with the positive feedback between these processes.


TAPPI Journal ◽  
2009 ◽  
Vol 8 (1) ◽  
pp. 20-26 ◽  
Author(s):  
PEEYUSH TRIPATHI ◽  
MARGARET JOYCE ◽  
PAUL D. FLEMING ◽  
MASAHIRO SUGIHARA

Using an experimental design approach, researchers altered process parameters and material prop-erties to stabilize the curtain of a pilot curtain coater at high speeds. Part I of this paper identifies the four significant variables that influence curtain stability. The boundary layer air removal system was critical to the stability of the curtain and base sheet roughness was found to be very important. A shear thinning coating rheology and higher curtain heights improved the curtain stability at high speeds. The sizing of the base sheet affected coverage and cur-tain stability because of its effect on base sheet wettability. The role of surfactant was inconclusive. Part II of this paper will report on further optimization of curtain stability with these four variables using a D-optimal partial-facto-rial design.


2017 ◽  
Vol 14 (1) ◽  
pp. 101-112 ◽  
Author(s):  
Melissa Kelly

This article uses the concepts of ‘transnational social fields’ and ‘habitus’ to explore the multifaceted role families play in shaping the aspirations of onward migrating youth. The article draws on biographical life history interviews conducted with the children of Iranian migrants who were raised in Sweden but moved to London, UK as adults. The findings of the study suggest that from a young age, all the participants were pressured by their parents to perform well academically, and to achieve high level careers. These goals were easier to achieve in London than in Sweden for several reasons. Interestingly, however, participants’ understandings of what constituted success and their motivations for onward migration were nuanced and varied considerably by gender. The study contributes to an understanding of the role of multi-sited transnational social fields in shaping the aspirations of migrant youths, as well as the strategies taken up by these migrants to achieve their goals.


2018 ◽  
Vol 9 (01) ◽  
Author(s):  
Parul Gill ◽  
Poonam Malik ◽  
Pankaj Gill

The present study was undertaken to explore the decision making patterns of college girls in relation to clothing and their satisfaction level with these decision making patterns. Thirty under graduate college girls from Panipat city were approached to record their responses regarding decision making in relation to clothing and satisfaction level through a well structured questionnaire. It was found that most of the girls (56.66%) themselves made the decisions about the type of garment (Indian, western or both) they wear and majority of girls (70%) were highly satisfied with this decision making. Parents performed the role of buyers for their college going daughters' garments in most of the cases (63.33%) and the 73.33% girls had high level of satisfaction with this. In most of the cases (60%) the decision about the garment design was made by the girls themselves and they were highly satisfied with it. Keywords: clothing, college, girls, decision making.


Sign in / Sign up

Export Citation Format

Share Document