scholarly journals Future climate change scenario in hot semi-arid climate of Saurashtra, Gujarat by using statistical downscaling by LARS-WG model

MAUSAM ◽  
2021 ◽  
Vol 68 (4) ◽  
pp. 589-596
Author(s):  
JAYANTA SARKAR ◽  
J. R. CHICHOLIKAR

Climate change is considered to be the greatest challenge faced by mankind in the twenty first century which can lead to severe impacts on different major sectors of the world such as water resources, agriculture, energy and tourism and are likely to alter trends and timing of precipitation and other weather drivers. Analyses and prediction of change in critical climatic variables like rainfall and temperature are, therefore, extremely important. Keeping this in mind, this study aims to verify the skills of LARS-WG (Long Ashton Research - Weather Generator), a statistical downscaling model, in simulating weather data in hot semi-arid climate of Saurashtra and analyze the future changes of temperature (maximum and minimum) and precipitation downscaled by LARS-WG based on IPCC SRA2 scenario generated by seven GCMs' projections for the near (2011-2030), medium (2046-2065) and far (2080-2099) future periods. Rajkot (22.3° N, 70.78° E) observatory of IMD, representing hot semi-arid climate of Saurashtra, Gujarat state was chosen for this purpose. Daily rainfall, maximum and minimum temperature data for the period of 1969-2013 have been utilized.             LARS-WG is found to show reasonably good skill in downscaling daily rainfall and excellent skill in downscaling maximum and minimum temperature. The downscaled rainfall indicated no coherent change trends among various GCMs’ projections of rainfall during near, medium and far future periods. Contrary to rainfall projections, simulations from the seven GCMs have coherent results for both the maximum and minimum temperatures. Based on the ensemble mean of seven GCMs, projected rainfall at Rajkot in monsoon season (JJAS) showed an increase in near future, i.e., 2011-2030, medium future (2046-2065) and far future (2080-2099) periods to the tune of 2, 11 and 14% respectively compared to the baseline value. Model studies indicating tropospheric warming leading to enhancement of atmospheric moisture content could be the reason for this increasing trend. Further, at the study site summer (MAM) maximum temperature is projected to increase by 0.5, 1.7 and 3.3°C during 2011-2030, 2046-2065 and 2080-2099 respectively and winter (DJF) minimum temperature is projected to increase by 0.8, 2.2 and 4.5 °C during 2011-2030, 2046-2065 and 2080-2099 respectively.  

2020 ◽  
Vol 12 (9) ◽  
pp. 3905
Author(s):  
Muhammad Mohsin Waqas ◽  
Syed Hamid Hussain Shah ◽  
Usman Khalid Awan ◽  
Muhammad Waseem ◽  
Ishfaq Ahmad ◽  
...  

Impact assessments on climate change are essential for the evaluation and management of irrigation water in farming practices in semi-arid environments. This study was conducted to evaluate climate change impacts on water productivity of maize in farming practices in the Lower Chenab Canal (LCC) system. Two fields of maize were selected and monitored to calibrate and validate the model. A water productivity analysis was performed using the Soil–Water–Atmosphere–Plant (SWAP) model. Baseline climate data (1980–2010) for the study site were acquired from the weather observatory of the Pakistan Meteorological Department (PMD). Future climate change data were acquired from the Hadley Climate model version 3 (HadCM3). Statistical downscaling was performed using the Statistical Downscaling Model (SDSM) for the A2 and B2 scenarios of HadCM3. The water productivity assessment was performed for the midcentury (2040–2069) scenario. The maximum increase in the average maximum temperature (Tmax) and minimum temperature (Tmin) was found in the month of July under the A2 and B2 scenarios. The scenarios show a projected increase of 2.8 °C for Tmax and 3.2 °C for Tmin under A2 as well as 2.7 °C for Tmax and 3.2 °C for Tmin under B2 for the midcentury. Similarly, climate change scenarios showed that temperature is projected to decrease, with the average minimum and maximum temperatures of 7.4 and 6.4 °C under the A2 scenario and 7.7 and 6.8 °C under the B2 scenario in the middle of the century, respectively. However, the highest precipitation will decrease by 56 mm under the A2 and B2 scenarios in the middle of the century for the month of September. The input and output data of the SWAP model were processed in R programming for the easy working of the model. The negative impact of climate change was found under the A2 and B2 scenarios during the midcentury. The maximum decreases in Potential Water Productivity (WPET) and Actual Water Productivity (WPAI) from the baseline period to the midcentury scenario of 1.1 to 0.85 kgm−3 and 0.7 to 0.56 kgm−3 were found under the B2 scenario. Evaluation of irrigation practices directs the water managers in making suitable water management decisions for the improvement of water productivity in the changing climate.


2018 ◽  
Vol 50 (1) ◽  
pp. 24-42 ◽  
Author(s):  
Lei Chen ◽  
Jianxia Chang ◽  
Yimin Wang ◽  
Yuelu Zhu

Abstract An accurate grasp of the influence of precipitation and temperature changes on the variation in both the magnitude and temporal patterns of runoff is crucial to the prevention of floods and droughts. However, there is a general lack of understanding of the ways in which runoff sensitivities to precipitation and temperature changes are associated with the CMIP5 scenarios. This paper investigates the hydrological response to future climate change under CMIP5 RCP scenarios by using the Variable Infiltration Capacity (VIC) model and then quantitatively assesses runoff sensitivities to precipitation and temperature changes under different scenarios by using a set of simulations with the control variable method. The source region of the Yellow River (SRYR) is an ideal area to study this problem. The results demonstrated that the precipitation effect was the dominant element influencing runoff change (the degree of influence approaching 23%), followed by maximum temperature (approaching 12%). The weakest element was minimum temperature (approaching 3%), despite the fact that the increases in minimum temperature were higher than the increases in maximum temperature. The results also indicated that the degree of runoff sensitivity to precipitation and temperature changes was subject to changing external climatic conditions.


1970 ◽  
Vol 8 (3) ◽  
pp. 147-167 ◽  
Author(s):  
Yam K Rai ◽  
Bhakta B Ale ◽  
Jawed Alam

Climate change and global warming are burning issues, which significantly threat agriculture and global food security. Change in solar radiation, temperature and precipitation will influence the change in crop yields and hence economy of agriculture. It is possible to understand the phenomenon of climate change on crop production and to develop adaptation strategies for sustainability in food production, using a suitable crop simulation model. CERES-Rice model of DSSAT v4.0 was used to simulate the rice yield of the region under climate change scenarios using the historical weather data at Nepal Agriculture Research Council (NARC) Tarahara (1989-2008). The Crop Model was calibrated using the experimental crop data, climate data and soil data for two years (2000-2001) and was validated by using the data of the year 2002 at NARC Tarahara. In this study various scenarios were undertaken to analyze the rice yield. The change in values of weather parameters due to climate change and its effects on the rice yield were studied. It was observed that increase in maximum temperature up to 2°C and 1°C in minimum temperature have positive impact on rice yield but beyond that temperature it was observed negative impact in both cases of paddy production in ambient temperature. Similarly, it was observed that increased in mean temperature, have negative impacts on rice yield. The impact of solar radiation in rice yield was observed positive during the time of study period. Adjustments were made in the fertilizer rate, plant density per square meter, planting date and application of water rate to investigate suitable agronomic options for adaptation under the future climate change scenarios. Highest yield was obtained when the water application was increased up to 3 mm depth and nitrogen application rate was 140 kg/ha respectively. DOI: http://dx.doi.org/10.3126/jie.v8i3.5941 JIE 2011; 8(3): 147-167


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 755
Author(s):  
Dang Nguyen Dong Phuong ◽  
Trung Q. Duong ◽  
Nguyen Duy Liem ◽  
Vo Ngoc Quynh Tram ◽  
Dang Kien Cuong ◽  
...  

Future projections of anthropogenic climate change play a pivotal role in devising viable countermeasures to address climate-related risks. This study strove to construct future daily rainfall and maximum and minimum temperature scenarios in Vu Gia Thu Bon river basin by employing the Statistical DownScaling Model (SDSM). The model performance was evaluated by utilizing a Taylor diagram with dimensioned and dimensionless statistics. During validation, all model-performance measures show good ability in simulating extreme temperatures and reasonable ability for rainfall. Subsequently, a set of predictors derived from HadCM3 and CanESM2 was selected to generate ensembles of each climatic variables up to the end of 21st century. The generated outcomes exhibit a consistent increase in both extreme temperatures under all emission scenarios. The greatest changes in maximum and minimum temperature were predicted to increase by 2.67–3.9 °C and 1.24–1.96 °C between the 2080s and reference period for the worst-case scenarios. Conversely, there are several discrepancies in the projections of rainfall under different emission scenarios as well as among considered stations. The predicted outcomes indicate a significant decrease in rainfall by approximately 11.57%–17.68% at most stations by 2099. Moreover, all ensemble means were subjected to the overall and partial trend analysis by applying the Innovative-Şen trend analysis method. The results exhibit similar trend patterns, thereby indicating high stability and applicability of the SDSM. Generally, it is expected that these findings will contribute numerous valuable foundations to establish a framework for the assessment of climate change impacts at the river basin scale.


2021 ◽  
Vol 21 (4) ◽  
pp. 474-479
Author(s):  
Junaid N. Khan ◽  
Asima Jillani ◽  
Syed Rouhullah Ali ◽  
Zarka Rashid ◽  
Zikra Rehman ◽  
...  

The present study aimed at modeling the impacts of climate change on precipitation and temperature and its trend in the context of changing climate in cold arid regions of north western Himalayas using multiple linear regression (MLR) model. The study was carried out in three different time slices viz., near future (2017-2045), mid future (2046-2072) and far future (2073-2099). The study includes the calibration of the observed climate data (maximum temperature, minimum temperature and precipitation) for fourteen years (2002-2015) and the outputs of downscaled scenario A2 of the Global Climate Model (GCM) data of Hadley Centre Coupled Model, (HadCM3) was used for validation, for the future. Daily climate (maximum temperature, minimum temperature and precipitation) scenarios were generated from 1961 to 2099 under A2 defined by Intergovernmental Panel on Climate Change (IPCC). During calibration, the maximum temperature, minimum temperature and precipitation showed decreasing trend. During validation, the maximum temperature showed an increasing trend in near future (2017- 2045) and decreasing trend in mid (2046-2072) and far future (2073-2099). While as, the minimum temperature and precipitation showed an increasing trend and decreasing trend respectively, in three futuristic phases. After validation, on comparison with the measured data, the variation in maximum temperature was found -2.59 oC in near future, -3.17 oC in mid future and -3.41 oC in far future. Similarly, for minimum temperature and precipitation, the variations with observed data were found 0.91 oC and -32.2 mm, respectively in near future, 2.01 oC and -34.6 mm, respectively in mid future, 4.08 oC and -3.4 mm, respectively in far future. These changes may be found due to global warming which lead to decrease in average annual precipitation and increase in average minimum temperatures causing the melting of glaciers.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Peixin Ren ◽  
Zelin Liu ◽  
Xiaolu Zhou ◽  
Changhui Peng ◽  
Jingfeng Xiao ◽  
...  

Abstract Background Vegetation phenology research has largely focused on temperate deciduous forests, thus limiting our understanding of the response of evergreen vegetation to climate change in tropical and subtropical regions. Results Using satellite solar-induced chlorophyll fluorescence (SIF) and MODIS enhanced vegetation index (EVI) data, we applied two methods to evaluate temporal and spatial patterns of the end of the growing season (EGS) in subtropical vegetation in China, and analyze the dependence of EGS on preseason maximum and minimum temperatures as well as cumulative precipitation. Our results indicated that the averaged EGS derived from the SIF and EVI based on the two methods (dynamic threshold method and derivative method) was later than that derived from gross primary productivity (GPP) based on the eddy covariance technique, and the time-lag for EGSsif and EGSevi was approximately 2 weeks and 4 weeks, respectively. We found that EGS was positively correlated with preseason minimum temperature and cumulative precipitation (accounting for more than 73% and 62% of the study areas, respectively), but negatively correlated with preseason maximum temperature (accounting for more than 59% of the study areas). In addition, EGS was more sensitive to the changes in the preseason minimum temperature than to other climatic factors, and an increase in the preseason minimum temperature significantly delayed the EGS in evergreen forests, shrub and grassland. Conclusions Our results indicated that the SIF outperformed traditional vegetation indices in capturing the autumn photosynthetic phenology of evergreen forest in the subtropical region of China. We found that minimum temperature plays a significant role in determining autumn photosynthetic phenology in the study region. These findings contribute to improving our understanding of the response of the EGS to climate change in subtropical vegetation of China, and provide a new perspective for accurately evaluating the role played by evergreen vegetation in the regional carbon budget.


Author(s):  
Kanawut Chattrairat ◽  
Waranyu Wongseree ◽  
Adisorn Leelasantitham

The climate change which is essential for daily life and especially agriculture has been forecasted by global climate models (GCMs) in the past few years. Statistical downscaling method (SD) has been used to improve the GCMs and enables the projection of local climate. Many pieces of research have studied climate change in case of individually seasonal temperature and precipitation for simulation; however, regional difference has not been included in the calculation. In this research, four fundamental SDs, linear regression (LR), Gaussian process (GP), support vector machine (SVM) and deep learning (DL), are studied for daily maximum temperature (TMAX), daily minimum temperature (TMIN), and precipitation (PRCP) based on the statistical relationship between the larger-scale climate predictors and predictands in Thailand. Additionally, the data sets of climate variables from over 45 weather stations overall in Thailand are used to calculate in this calculation. The statistical analysis of two performance criteria (correlation and root mean square error (RMSE)) shows that the DL provides the best performance for simulation. The TMAX and TMIN were calculated and gave a similar trend for all models. PRCP results found that in the North and South are adequate and poor performance due to high and low precipitation, respectively. We illustrate that DL is one of the suitable models for the climate change problem.


Atmosphere ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 273 ◽  
Author(s):  
Won-Ho Nam ◽  
Guillermo Baigorria ◽  
Eun-Mi Hong ◽  
Taegon Kim ◽  
Yong-Sang Choi ◽  
...  

Understanding long-term changes in precipitation and temperature patterns is important in the detection and characterization of climate change, as is understanding the implications of climate change when performing impact assessments. This study uses a statistically robust methodology to quantify long-, medium- and short-term changes for evaluating the degree to which climate change and urbanization have caused temporal changes in precipitation and temperature in South Korea. We sought to identify a fingerprint of changes in precipitation and temperature based on statistically significant differences at multiple-timescales. This study evaluates historical weather data during a 40-year period (1973–2012) and from 54 weather stations. Our results demonstrate that between 1993–2012, minimum and maximum temperature trends in the vicinity of urban and agricultural areas are significantly different from the two previous decades (1973–1992). The results for precipitation amounts show significant differences in urban areas. These results indicate that the climate in urbanized areas has been affected by both the heat island effect and global warming-caused climate change. The increase in the number of rainfall events in agricultural areas is highly significant, although the temporal trends for precipitation amounts showed no significant differences. Overall, the impacts of climate change and urbanization in South Korea have not been continuous over time and have been expressed locally and regionally in terms of precipitation and temperature changes.


Climate ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 165
Author(s):  
Prem B. Parajuli ◽  
Avay Risal

This study evaluated changes in climatic variable impacts on hydrology and water quality in Big Sunflower River Watershed (BSRW), Mississippi. Site-specific future time-series precipitation, temperature, and solar radiation data were generated using a stochastic weather generator LARS-WG model. For the generation of climate scenarios, Representative Concentration Pathways (RCPs), 4.5 and 8.5 of Global Circulation Models (GCMs): Hadley Center Global Environmental Model (HadGEM) and EC-EARTH, for three (2021–2040, 2041–2060 and 2061–2080) future climate periods. Analysis of future climate data based on six ground weather stations located within BSRW showed that the minimum temperature ranged from 11.9 °C to 15.9 °C and the maximum temperature ranged from 23.2 °C to 28.3 °C. Similarly, the average daily rainfall ranged from 3.6 mm to 4.3 mm. Analysis of changes in monthly average maximum/minimum temperature showed that January had the maximum increment and July/August had a minimum increment in monthly average temperature. Similarly, maximum increase in monthly average rainfall was observed during May and maximum decrease was observed during September. The average monthly streamflow, sediment, TN, and TP loads under different climate scenarios varied significantly. The change in average TN and TP loads due to climate change were observed to be very high compared to the change in streamflow and sediment load. The monthly average nutrient load under two different RCP scenarios varied greatly from as low as 63% to as high as 184%, compared to the current monthly nutrient load. The change in hydrology and water quality was mainly attributed to changes in surface temperature, precipitation, and stream flow. This study can be useful in the development and implementation of climate change smart management of agricultural watersheds.


Sign in / Sign up

Export Citation Format

Share Document