scholarly journals Simulating the impact of climate change on sugarcane production in Punjab

2021 ◽  
Vol 23 (3) ◽  
pp. 292-298
Author(s):  
HARPINDER SINGH ◽  
SUDHIR KUMAR MISHRA ◽  
KULDEEP SINGH ◽  
KULVIR SINGH ◽  
R. K. PAL ◽  
...  

The present study was performed at three diverse agro-climatic zones of Indian Punjab. A validated DSSAT-CANEGRO model was used to simulate the response of different climate change scenarios on cane yield of four sugarcane varieties (CoPb 91, CoJ 88, Co 118 and Co 238) for each zone. Results described that elevated and lowered minimum temperature upto 3.0°C may alter cane yield by -17.9 to 18.0 per cent. Similarly, ±3.0°C altered maximum temperature may change the cane yield by -17.6 to 17.5 per cent. The sugarcane yield may be decreased by 2.4 to 14.4 per cent, 3.3 to 17.6% and 0.3 to15.4 per cent with 2.5 to 15 per cent reduced solar radiation and increase in the same unit may enhance the yield by 1.9 to 9.0 per cent, 1.3 to 13.6 per cent and 2.0 to 12.3 per cent at Faridkot, Gurdaspur and Kapurthala, respectively. A±30 mm rainfall may change the cane yield by 9.2 to 18.0 % similarly, rise and fall in CO2 by 5 to 30 ppm was able to increase and decrease the cane yield by 2.4- 22.6 and 3.5 - 27.8 per cent, at different regions. This study confirmed that for sugarcane cultivation in Punjab CoPb 91 should be preferred. However, CoJ 88 and Co 238 may suffer cane yield loss of 7.8 and 9.9 per cent respectively.

1970 ◽  
Vol 8 (3) ◽  
pp. 147-167 ◽  
Author(s):  
Yam K Rai ◽  
Bhakta B Ale ◽  
Jawed Alam

Climate change and global warming are burning issues, which significantly threat agriculture and global food security. Change in solar radiation, temperature and precipitation will influence the change in crop yields and hence economy of agriculture. It is possible to understand the phenomenon of climate change on crop production and to develop adaptation strategies for sustainability in food production, using a suitable crop simulation model. CERES-Rice model of DSSAT v4.0 was used to simulate the rice yield of the region under climate change scenarios using the historical weather data at Nepal Agriculture Research Council (NARC) Tarahara (1989-2008). The Crop Model was calibrated using the experimental crop data, climate data and soil data for two years (2000-2001) and was validated by using the data of the year 2002 at NARC Tarahara. In this study various scenarios were undertaken to analyze the rice yield. The change in values of weather parameters due to climate change and its effects on the rice yield were studied. It was observed that increase in maximum temperature up to 2°C and 1°C in minimum temperature have positive impact on rice yield but beyond that temperature it was observed negative impact in both cases of paddy production in ambient temperature. Similarly, it was observed that increased in mean temperature, have negative impacts on rice yield. The impact of solar radiation in rice yield was observed positive during the time of study period. Adjustments were made in the fertilizer rate, plant density per square meter, planting date and application of water rate to investigate suitable agronomic options for adaptation under the future climate change scenarios. Highest yield was obtained when the water application was increased up to 3 mm depth and nitrogen application rate was 140 kg/ha respectively. DOI: http://dx.doi.org/10.3126/jie.v8i3.5941 JIE 2011; 8(3): 147-167


2019 ◽  
Vol 20 (6) ◽  
pp. 1197-1211 ◽  
Author(s):  
Rakesh K. Gelda ◽  
Rajith Mukundan ◽  
Emmet M. Owens ◽  
John T. Abatzoglou

Abstract Climate model output is often downscaled to grids of moderately high spatial resolution (~4–6-km grid cells). Such projections have been used in numerous hydrological impact assessment studies at watershed scales. However, relatively few studies have been conducted to assess the impact of climate change on the hydrodynamics and water quality in lakes and reservoirs. A potential barrier to such assessments is the need for meteorological variables at subdaily time scales that are downscaled to in situ observations to which lake and reservoir water quality models have been calibrated and validated. In this study, we describe a generalizable procedure that utilizes gridded downscaled data; applies a secondary bias-correction procedure using equidistance quantile mapping to map projections to station-based observations; and implements temporal disaggregation models to generate point-scale hourly air and dewpoint temperature, wind speed, and solar radiation for use in water quality models. The proposed approach is demonstrated for six locations within New York State: four within watersheds of the New York City water supply system and two at nearby National Weather Service stations. Disaggregation models developed using observations reproduced hourly data well at all locations, with Nash–Sutcliffe efficiency greater than 0.9 for air temperature and dewpoint, 0.4–0.6 for wind speed, and 0.7–0.9 for solar radiation.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 852 ◽  
Author(s):  
Mohammad Kamruzzaman ◽  
Syewoon Hwang ◽  
Soon-Kun Choi ◽  
Jaepil Cho ◽  
Inhong Song ◽  
...  

This research aims to assess the impact of climate change on water balance components in irrigated paddy cultivation. The APEX-Paddy model, which is the modified version of the APEX (Agricultural Policy/Environmental eXtender) model for paddy ecosystems, was used to evaluate the paddy water balance components considering future climate scenarios. The bias-corrected future projections of climate data from 29 GCMs (General Circulation Models) were applied to the APEX-Paddy model simulation. The study area (Jeonju station) forecasts generally show increasing patterns in rainfall, maximum temperature, and minimum temperature with a rate of up to 23%, 27%, and 45%, respectively. The hydrological simulations suggest over-proportional runoff–rainfall and under-proportional percolation and deep-percolation–rainfall relationships for the modeled climate scenarios. Climate change scenarios showed that the evapotranspiration amount was estimated to decrease compared to the baseline period (1976–2005). The evaporation was likely to increase by 0.12%, 2.21%, and 7.81% during the 2010s, 2040s, and 2070s, respectively under Representative Concentration Pathway (RCP)8.5, due to the increase in temperature. The change in evaporation was more pronounced in RCP8.5 than the RCP4.5 scenario. The transpiration is expected to reduce by 2.30% and 12.62% by the end of the century (the 2070s) under RCP4.5 and RCP8.5, respectively, due to increased CO2 concentration. The irrigation water demand is generally expected to increase over time in the future under both climate scenarios. Compared to the baseline, the most significant change is expected to increase in the 2040s by 3.21% under RCP8.5, while the lowest increase was found by 0.36% in 2010s under RCP4.5. The increment of irrigation does not show a significant difference; the rate of increase in the irrigation was found to be greater RCP8.5 than RCP4.5 except in the 2070s. The findings of this study can play a significant role as the basis for evaluating the vulnerability of rice production concerning water management against climate change.


2013 ◽  
Vol 31 (1) ◽  
pp. 93-99 ◽  
Author(s):  
Pedro Palencia ◽  
Fátima Martínez ◽  
Juan Jesús Medina ◽  
José López-Medina

The impact that future climatic conditions will have on agricultural productivity depends on the sensitivity to each environmental factor and relative changes in temperature, precipitation and UV-B radiation. The strawberry (Fragaria x ananassa) is a microclimatic crop cultivated almost worldwide and Spain is the world's second-largest strawberry producer after the USA. Strawberry production in Huelva has been affected by climate change in recent decades. Temperature and solar radiation are primary environmental factors controlling short-day strawberry plant growth and development. Temperature is a limiting factor in crop productivity. We assessed the effect of variations in temperature and solar radiation on strawberry production and crop cycle duration. The study was carried out in commercial strawberry fruit production fields in the province of Huelva (Spain's southwestern coast). Fresh plants of cv. Camarosa were cultivated from October to June. The resulting crop was recorded weekly in the production field: early and total strawberry productions (g/plant), were recorded from January to March and from January to May, respectively. Data revealed that between early production and temperature (R²= 0.86) and between early production and solar radiation (R²= 0.73) there was a linear relationship. However, total production and temperature (R²= 0.69) and total production and solar radiation (R²= 0.69) were related by a quadratic relationship. Our estimates suggest that strawberry production could be affected by climate change. Due to the relationship between yield and temperature, and between yield and solar radiation, climate change scenarios were found to result in reductions in crop cycle duration.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Se Jin Jeung ◽  
Jang Hyun Sung ◽  
Byung Sik Kim

In assessing the impact of climate change, the use of a multimodel ensemble (MME) is required to quantify uncertainties between scenarios and produce downscaled outlines for the simulation of climate under the influence of different factors including topography. This study of climate change scenarios from 13 global climate models (GCMs) assesses the impacts of future climate change. Unlike South Korea, North Korea lacks studies using climate change scenarios of the Coupled Model Intercomparison Project Phase 5 (CMIP5) and only recently did the country start the projection of extreme precipitation episodes. As such, one of the main purposes of this study is to predict changes in the average climatic conditions of North Korea in the future. The result of comparing downscaled climate change scenarios with observation data for a reference period indicates the high applicability of the MME. Furthermore, this study classifies climatic zones by applying the Köppen–Geiger climatic zones classification to the MME, which is validated for future precipitation and temperature. The result suggests that the continental climate that covers the inland area for the reference climate is expected to shift into the temperate climate. Moreover, the coefficient of variation (CV) in the temperature ensemble is particularly low for the southern coast of the Korean Peninsula, and, accordingly, a high possibility of the shifting climatic zone of the coast is predicted.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Virgílio A. Bento ◽  
Andreia F. S. Ribeiro ◽  
Ana Russo ◽  
Célia M. Gouveia ◽  
Rita M. Cardoso ◽  
...  

AbstractThe impact of climate change on wheat and barley yields in two regions of the Iberian Peninsula is here examined. Regression models are developed by using EURO-CORDEX regional climate model (RCM) simulations, forced by ERA-Interim, with monthly maximum and minimum air temperatures and monthly accumulated precipitation as predictors. Additionally, RCM simulations forced by different global climate models for the historical period (1972–2000) and mid-of-century (2042–2070; under the two emission scenarios RCP4.5 and RCP8.5) are analysed. Results point to different regional responses of wheat and barley. In the southernmost regions, results indicate that the main yield driver is spring maximum temperature, while further north a larger dependence on spring precipitation and early winter maximum temperature is observed. Climate change seems to induce severe yield losses in the southern region, mainly due to an increase in spring maximum temperature. On the contrary, a yield increase is projected in the northern regions, with the main driver being early winter warming that stimulates earlier growth. These results warn on the need to implement sustainable agriculture policies, and on the necessity of regional adaptation strategies.


2020 ◽  
Vol 13 (1) ◽  
pp. 27
Author(s):  
Hatem Mahmoud ◽  
Ayman Ragab

The density of building blocks and insufficient greenery in cities tend to contribute dramatically not only to increased heat stress in the built environment but also to higher energy demand for cooling. Urban planners should, therefore, be conscious of their responsibility to reduce energy usage of buildings along with improving outdoor thermal efficiency. This study examines the impact of numerous proposed urban geometry cases on the thermal efficiency of outer spaces as well as the energy consumption of adjacent buildings under various climate change scenarios as representative concentration pathways (RCP) 4.5 and 8.5 climate projections for New Aswan city in 2035. The investigation was performed at one of the most underutilized outdoor spaces on the new campus of Aswan University in New Aswan city. The potential reduction of heat stress was investigated so as to improve the thermal comfort of the investigated outdoor spaces, as well as energy savings based on the proposed strategies. Accordingly, the most appropriate scenario to be adopted to cope with the inevitable climate change was identified. The proposed scenarios were divided into four categories of parameters. In the first category, shelters partially (25–50% and 75%) covering the streets were used. The second category proposed dividing the space parallel or perpendicular to the existing buildings. The third category was a hybrid scenario of the first and second categories. In the fourth category, a green cover of grass was added. A coupling evaluation was applied utilizing ENVI-met v4.2 and Design-Builder v4.5 to measure and improve the thermal efficiency of the outdoor space and reduce the cooling energy. The results demonstrated that it is better to cover outdoor spaces with 50% of the overall area than transform outdoor spaces into canyons.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 219 ◽  
Author(s):  
Antonio-Juan Collados-Lara ◽  
David Pulido-Velazquez ◽  
Rosa María Mateos ◽  
Pablo Ezquerro

In this work, we developed a new method to assess the impact of climate change (CC) scenarios on land subsidence related to groundwater level depletion in detrital aquifers. The main goal of this work was to propose a parsimonious approach that could be applied for any case study. We also evaluated the methodology in a case study, the Vega de Granada aquifer (southern Spain). Historical subsidence rates were estimated using remote sensing techniques (differential interferometric synthetic aperture radar, DInSAR). Local CC scenarios were generated by applying a bias correction approach. An equifeasible ensemble of the generated projections from different climatic models was also proposed. A simple water balance approach was applied to assess CC impacts on lumped global drawdowns due to future potential rainfall recharge and pumping. CC impacts were propagated to drawdowns within piezometers by applying the global delta change observed with the lumped assessment. Regression models were employed to estimate the impacts of these drawdowns in terms of land subsidence, as well as to analyze the influence of the fine-grained material in the aquifer. The results showed that a more linear behavior was observed for the cases with lower percentage of fine-grained material. The mean increase of the maximum subsidence rates in the considered wells for the future horizon (2016–2045) and the Representative Concentration Pathway (RCP) scenario 8.5 was 54%. The main advantage of the proposed method is its applicability in cases with limited information. It is also appropriate for the study of wide areas to identify potential hot spots where more exhaustive analyses should be performed. The method will allow sustainable adaptation strategies in vulnerable areas during drought-critical periods to be assessed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alizée Chemison ◽  
Gilles Ramstein ◽  
Adrian M. Tompkins ◽  
Dimitri Defrance ◽  
Guigone Camus ◽  
...  

AbstractStudies about the impact of future climate change on diseases have mostly focused on standard Representative Concentration Pathway climate change scenarios. These scenarios do not account for the non-linear dynamics of the climate system. A rapid ice-sheet melting could occur, impacting climate and consequently societies. Here, we investigate the additional impact of a rapid ice-sheet melting of Greenland on climate and malaria transmission in Africa using several malaria models driven by Institute Pierre Simon Laplace climate simulations. Results reveal that our melting scenario could moderate the simulated increase in malaria risk over East Africa, due to cooling and drying effects, cause a largest decrease in malaria transmission risk over West Africa and drive malaria emergence in southern Africa associated with a significant southward shift of the African rain-belt. We argue that the effect of such ice-sheet melting should be investigated further in future public health and agriculture climate change risk assessments.


Author(s):  
Hevellyn Talissa dos Santos ◽  
Cesar Augusto Marchioro

Abstract The small tomato borer, Neoleucinodes elegantalis (Guenée, 1854) is a multivoltine pest of tomato and other cultivated solanaceous plants. The knowledge on how N. elegantalis respond to temperature may help in the development of pest management strategies, and in the understanding of the effects of climate change on its voltinism. In this context, this study aimed to select models to describe the temperature-dependent development rate of N. elegantalis and apply the best models to evaluate the impacts of climate change on pest voltinism. Voltinism was estimated with the best fit non-linear model and the degree-day approach using future climate change scenarios representing intermediary and high greenhouse gas emission rates. Two out of the six models assessed showed a good fit to the observed data and accurately estimated the thermal thresholds of N. elegantalis. The degree-day and the non-linear model estimated more generations in the warmer regions and fewer generations in the colder areas, but differences of up to 41% between models were recorded mainly in the warmer regions. In general, both models predicted an increase in the voltinism of N. elegantalis in most of the study area, and this increase was more pronounced in the scenarios with high emission of greenhouse gases. The mathematical model (74.8%) and the location (9.8%) were the factors that mostly contributed to the observed variation in pest voltinism. Our findings highlight the impact of climate change on the voltinism of N. elegantalis and indicate that an increase in its population growth is expected in most regions of the study area.


Sign in / Sign up

Export Citation Format

Share Document