scholarly journals Water cut forecast after downhole pumping equipment optimization based on displacement characteristics

Author(s):  
V. A. Grishchenko ◽  
◽  
S. S. Pozhitkova ◽  
V. Sh. Mukhametshin ◽  
R. F. Yakupov ◽  
...  

The article deals with the issue of water cut predicting when downhole pumping equipment optimizing. In practice, an expert assessment of this parameter is used as a rule, which does not take into account the degree of planned optimization relative to the current mode. The paper proposes a methodology allowing taking into account the dynamics of planned fluid withdrawals in predicting water cut based on displacement characteristics. To solve the described problem, four characteristics were selected with a certain type of statistical dependence, where, in one part of the equation, fluid withdrawals do not depend on oil withdrawals. This allows, by setting different values of fluid production, to predict oil production and water cut at any time period. On the example of deposits of one of the regions of the Ural-Volga region, the most suitable for certain geological conditions displacement characteristics were determined. Look back analysis shows a high degree of convergence between the calculated and actual water cut indicators – the average absolute deviation is 1.9%, which allows forecasting with sufficient accuracy. Keywords: oil fields development; production stimulation; displacement characteristics; water cut.

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Lixiang Xie ◽  
Wenbo Lu ◽  
Jincai Gu ◽  
Gaohui Wang

Drilling and blasting method as a common excavation method is widely used in the underground engineering construction. However, in the complicated geological conditions, the path of blasting excavation available has limitation, and then the larger blasting vibration is produced, which influence the stability and safety of the protected structure. To effectively reduce the blasting vibration by optimizing the blasting excavation method, firstly, the site test on blasting vibration is conducted to obtain the blasting vibration data; secondly, the LS-DYNA software is applied to simulate the vibration generated by blasting in site test, based on back analysis on the blasting vibration, the mechanical parameters of the rock mass are obtained, and they are used to simulate six different types of blasting excavation method. According to the analysis on them, the reasonable blasting excavation method is proposed to reduce the blasting vibration which can satisfy the blasting safety regulation.


2016 ◽  
Vol 10 (1) ◽  
pp. 448-460 ◽  
Author(s):  
C.B. Zhou ◽  
R. He ◽  
N. Jiang ◽  
S.W. Lu

Due to the complexity of multiple rocks and multiple parameters circumstance, various parameters are often reduced to only one parameter empirically to generalize geological conditions, ignoring the really influential parameters. A developed method was presented as a complement to 3D displacement inversion to obtain the relative important parameters under complex conditions with limited computational work. Furthermore, this method was applied to a high steep slope in open-pit mining to investigate field applicability of the developed system. Back analysis was conducted in the reality of the east open-pit working area of Daye Iron Mine and propositional steps were presented for parameters solving in complex circumstance. Firstly, multi-factor and single-factor sensitivity analysis were carried out to classify rock mass and mechanical parameters respectively according to the extent of their effects on deformations. Secondly, based on the results, main influence factors were selected as inversion parameters and taken into a 3D calculating model to get the displacement field and stress field, all of which would be the artificial network training samples together with inversion parameters. Thirdly, taking the real deformations as input for the trained back propagation (BP) neural network, the real material mechanical parameters could be obtained. Finally, the results of trained neural network have been confirmed by field monitoring data and provide a reference to obtain the matter parameters in complicated environment for other similar projects.


2021 ◽  
pp. 84-94
Author(s):  
E. R. Shakirov ◽  
N. N. Konushina ◽  
S. A. Leontiev

The article is devoted to the problems of operating a booster pumping station in the process of developing an oil field. During operation, the water cut of the product increases, and accordingly there is a need for engineering solutions that ensure the preservation of the throughput of the site, a decrease in the proportion of water in the oil produced, and a decrease in the workload of the operating techno­logical equipment. The practical significance of the article is due to the solution of the above-described problem by designing a booster pumping station and installing a preliminary water discharge in two independent stages, which will make it possible to put into operation first a booster pumping station, then, as fluid production increases, a preliminary discharge of produced water. This solution allows you to maintain the throughput of the site, to prepare field oil for reception at the central points of reception and preparation of oil. When designing and implementing the first stage, connection points, land acquisition, power supply are provided, taking into account the promising stage. The commissioning of the preliminary water discharge unit solves the problem of maintaining the throughput of the pipeline section to the receiving point and, at the same time, is a source of water for maintaining reservoir pressure.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Xianzhou Lyu ◽  
Zhen Chen ◽  
Zenghui Zhao ◽  
Weiming Wang

For a pile foundation design, the value of proportional coefficient m to define the soil horizontal resist force is a significant parameter. However, different geological conditions and experimental environment have led to different m values. In this paper, an in situ test is firstly carried out on the horizontal bearing capacity of large-size precast square-piles. The piles deformation is then derived by using the optimization method from the measured data. Secondly a back analysis model is established to calculate the m value by using the simplex method, which reveals the evolution rule of the value of proportional coefficient m. Results show that the horizontal bearing characteristics of precast piles depend on the interaction force of piles and soils. The action mechanism of the soils around the piles is gradually developed with the increase in the concrete content. The horizontal critical load and the Eigenvalue of horizontal bearing capacity increased by 16.7% and 20%, respectively. It is also seen that the higher the content of the cement-soil around the piles and the longer the pile length, the bigger the m value obtained. The variation of the proportional coefficient m with the horizontal displacement of pile top is defined by three stages: rapid decaying stage, slow decaying stage, and balanced stage, respectively. The inverse analysis method on the proposed m value can accurately reflect the actual working state of piles and soils. In the depth of 3~18m in the west of Ji'nan, the range of m value is recommended as 4~6.58 MN·m-4. When Δ takes 12mm, the values of m are consistent with the result from the back analysis. In summary, the obtained m value can be effectively used to guide the design of enclosure structure in the super deep foundation pit in the Yellow River alluvial stratum.


2012 ◽  
Vol 581-582 ◽  
pp. 50-53 ◽  
Author(s):  
Li Ping Guo ◽  
Lei Wang ◽  
Yi Min Zhang

The rheology behavior of waxy crude emulsion is an important basic information on safeguard research of crude oil-water flow. The non-newtonian characteristics of apparent viscosity of three kinds of waxy crude emulsions were studied experimentally around condensation point; three apparent viscosity forecasting models were evaluated by least-square regressions based on experimental data of shear balance and the average absolute deviation was taken as the measurement of fitness of a model to experimental data. It is concluded that the Pal-Rhodes model, whose relative deviation can be as high as 80%, is the worst forecasting model, but it need the least experiment data to obtain model parameters, only water cut was needed. Elgibaly model has the best forecasting results, the average absolute deviation of forecasting results of three waxy crude emulsions under the condition of different temperature, water cut and shear rate were all less than 15%, but compared with the other two models, Elgibaly model needs the most parameters.


2020 ◽  
Vol 4 (1) ◽  
pp. 15-18
Author(s):  
Oghenegare E. Eyankware ◽  
Idaereesoari Harriet Ateke ◽  
Okonta Nnamdi Joseph

Well DEF, a well located in Niger Delta region of Nigeria was shut down for 7 years. On gearing towards re-starting production, different options such as installation of gas lift mechanism, servicing and installation of packers and valves were evaluated for possibility of increasing well fluid productivity. Hence, this research was focused on optimizing well fluid productivity using PROSPER through installation of continuous gas lift mechanism on an existing well using incomplete dataset; in addition, the work evaluated effect of gas injection rates, wellhead pressure, water cut and gas gravity on efficiency of the artificial lift mechanism for improved well fluid production. Results of the study showed that optimum gas injection rate of 0.6122 MMscf/day produced well fluid production of 264.28 STB/day which is lower than pristine production rate (266 STB/day) of the well. Also, increment in wellhead pressure resulted in decrease in well production, increase in water cut facilitated reduction in well fluid productivity while gas gravity is inversely proportional to well fluid productivity. Based on results obtained, authors concluded that Well DEF does not require gaslift mechanism hence, valves and parkers need to be re-serviced and re-installed for sustained well fluid.


Author(s):  
Jinkai Wang ◽  
Kai Zhao ◽  
Zhaoxun Yan ◽  
Yuxiang Fu ◽  
Jun Xie

For 3D geological modelling of oil and gas reservoirs, well pattern density is directly related to the number of samples involved in the calculation, which determines the variation function of stochastic modelling and has great impacts on the results of reservoir modelling. This paper focuses on the relationship between well pattern density and the variogram of stochastic modelling, selects the large Sulige gas field with many well pattern types as the research object, and establishes a variogram database of stochastic models for different well pattern densities. First, the well pattern in the study area is divided into three different types (well patterns A, B, and C) according to well and row space. Several different small blocks (model samples) are selected from each type of well pattern to establish the model, and their reasonable variogram values (major range, minor range and vertical range) are obtained. Then, the variogram values of all model samples with similar well pattern densities are analysed and counted, and the variogram database corresponding to each type of well pattern is established. Finally, the statistical results are applied to the modelling process of other blocks with similar well pattern density to test their accuracy. The results show that the reservoir model established by using the variation function provided in this paper agrees well with the actual geological conditions and that the random model has a high degree of convergence. This database has high adaptability, and the model established is reliable.


2021 ◽  
Author(s):  
Timur Eduardovich Nigmatullin ◽  
Vladislav Yurievich Nikulin ◽  
Airat Rafaelevich Shaymardanov ◽  
Rinat Rifkhatovich Mukminov ◽  
Alexandr Yurievich Ivanov ◽  
...  

Abstract The article describes the choosing a water-and-gas shutoff technology in horizontal wells (HW) drilled in terrigenous reservoirs of the North Komsomolskoye field. The well completion system is characterized by the use of liners equipped with external liner packers and inflow control devices (ICD). To solve the problem, the world experience in the use the water-and-gas shutoff technologies in HW was studied. A matrix for choosing a technology with the use of technical means and combined effect was developed based on the type of isolated fluid, the type of reservoir and the method of well completion. The technology of installing a straddle system with cup packers and a blind inter-packer pipe in a horizontal wellbore was selected to increase the success of work on isolating the inflow of water and gas in difficult geological conditions of the North Komsomolskoye field. The technology was successfully tested: a producing well with almost 100% water cut was return to effective production. A similar straddle system, but with a perforated spacer pipe, was used for directional injection of sealants selected for the conditions of the North Komsomolskoye field into the water cut zone of the horizontal wellbore. The results of pilot field tests indicate that there is a prospect of using water-and-gas shutoff technologies to limit water and gas inflow at the North Komsomolskoye field.


2019 ◽  
Vol 23 (4) ◽  
pp. 303-308
Author(s):  
Hongsheng Zhou ◽  
Yunsheng Wang ◽  
Tong Shen ◽  
Qianqian Feng

In previous studies, most of the studies are based on the failure mechanism of the landslide deformable body on tunnel and the safety monitoring and early warning after the completion of the tunnel, while there is less research on tunnel construction. In order to study the comprehensive treatment of the deformable body of the ancient landslide in the giant deep rock bedding better, the treatment of JM tunnel landslide deformable body was selected to carry on the empirical study. After a detailed analysis of the geological characteristics of JM tunnel engineering landslide, the stability analysis of the landslide and the deformation body and the calculation of the thrust value based on the FLAC model were carried out on the basis of the monitoring data. After the construction of the model, the intensity parameters of the slip mass deformation and the sliding zone were obtained from the back analysis. On the basis of the above, the comprehensive treatment scheme for the rear side of the old landslide deformation body was determined, including earthwork cleanup, grading supporting, and the back pressure by abandoning the cleaned earthwork at the leading edge. The study is of great significance to the design of the construction of undercrossing tunnel of landslide under the complicated geological conditions.


Sign in / Sign up

Export Citation Format

Share Document