scholarly journals Moisture and energy content of fire-burnt trees for bioenergy production: A case study of four tree species from northwestern Ontario

2011 ◽  
Vol 87 (1) ◽  
pp. 42-47 ◽  
Author(s):  
Steven Hosegood ◽  
Mathew Leitch ◽  
Chander Shahi ◽  
Reino Pulkki

With the current energy reform, the Ontario government has taken an initiative to phase out coal-fired generatingstations by 2014, and replace coal with biomass as feedstock at the Atikokan Generating Station. This switch to greenenergy production has opened a new avenue of income for mills and biomass-harvesting companies. However, as theneed for biomass increases, harvesting residues may no longer satisfy the needs of cogeneration facilities and new sourcesmay be sought. A potential source of woody biomass in Ontario is from forest fires. On average, an area of 35 460 ha or3 868 034 m3 of wood is devastated by wildfire every year in the Area of the Undertaking in Ontario and has the potentialto be salvaged. However, the fuel quality and feasibility of salvaging wildfire-burnt areas for bioenergy production innorthern Ontario has not been investigated so far. In this study, five different-aged fires in the MNR Thunder Bay District—12, 18, 24, 37, and 52 months old—were sampled for moisture content and calorific value of the wood. This samplingwas done across four of the most prolific tree species grown in northwestern Ontario—white birch, trembling aspen,balsam fir, and black spruce. The average moisture content (dry weight basis) of the five fires ranged from 27.1% to 34.9%and the average calorific value from 19.0 MJ/kg to 21.1 MJ/kg. Significant differences in moisture content were foundbetween the species and the ages of fire. Hardwood species had significantly higher moisture content compared to softwoods.The results display that wildfire-burnt areas have the potential to supply good-quality fuel for bioenergy productionin northwestern Ontario. Key words: biomass, wildfire-burnt areas, bioenergy production, moisture content, calorific value, northern Ontario

2010 ◽  
Vol 64 (2) ◽  
Author(s):  
Agnieszka Zawadzka ◽  
Liliana Krzystek ◽  
Stanisław Ledakowicz

AbstractTo carry out autothermal drying processes during the composting of biomass, a horizontal tubular reactor was designed and tested. A biodrying tunnel of the total capacity of 240 dm3 was made of plastic material and insulated with polyurethane foam to prevent heat losses. Municipal solid waste and structural plant material were used as the input substrate. As a result of autothermal drying processes, moisture content decreased by 50 % of the initial moisture content of organic waste of about 800 g kg−1. In the tested cycles, high temperatures of biodried waste mass were achieved (54–56°C). An appropriate quantity of air was supplied to maintain a satisfactory level of temperature and moisture removal in the biodried mass and high energy content in the final product. The heat of combustion of dried waste and its calorific value were determined in a calorimeter. Examinations of pyrolysis and gasification of dried waste confirmed their usefulness as biofuel of satisfactory energy content.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5816
Author(s):  
Krzysztof Kapusta

Two experimental simulations of underground coal gasification (UCG) processes, using large bulk samples of lignites, were conducted in a surface laboratory setup. Two different lignite samples were used for the oxygen-blown experiments, i.e., “Velenje” meta-lignite (Slovenia) and “Oltenia” ortho-lignite (Romania). The average moisture content of the samples was 31.6wt.% and 45.6wt.% for the Velenje and Oltenia samples, respectively. The main aim of the study was to assess the suitability of the tested lignites for the underground coal gasification process. The gas composition and its production rates, as well as the temperatures in the artificial seams, were continuously monitored during the experiments. The average calorific value of gas produced during the Velenje lignite experiment (6.4 MJ/Nm3) was much higher compared to the result obtained for the experiment with Oltenia lignite (4.8 MJ/Nm3). The Velenje lignite test was also characterized by significantly higher energy efficiency, i.e., 44.6%, compared to the gasification of Oltenia lignite (33.4%). The gasification experiments carried out showed that the physicochemical properties of the lignite used considerably affect the in situ gasification process. Research also indicates that UCG can be considered as a viable option for the extraction of lignite deposits; however, lignites with a lower moisture content and higher energy density are preferred, due to their much higher process efficiency.


Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 869 ◽  
Author(s):  
Núñez-Retana ◽  
Wehenkel ◽  
Vega-Nieva ◽  
García-Quezada ◽  
Carrillo-Parra

Lack of knowledge regarding the fuel quality of diverse tree species prevents their use. Furthermore, the potential use of wood with the bark of different tree species for pellet production is still relatively unexplored in the scientific literature. In Mexico, the sawdust of Quercus genus (oak) is underutilized, despite it being an important forest resource, due to some anatomical and technological characteristics. The sawdust of Quercus with bark is also considered to have a low economic value. The objective of this study was to analyze the energy characteristics of barked and debarked Quercus sideroxyla, Q. rugosa, Q. laeta, and Q. conzattii in order to evaluate their potential for pellet production. Granulometric distribution, bulk density, proximal analysis, and calorific value tests were carried out. The sawdust of the four tree species studied was in accordance with the limits established by the standard EN 14961-2. Sawdust with a particle size of 0.425 mm had the highest percentage of retained mass (30.33%) (p < 0.05) in the granulometry test. There were no statistical differences in granulometry (p > 0.05) between barked and debarked sawdust for all Quercus species. Barked sawdust presented higher bulk density (p < 0.05) than debarked sawdust (246 and 224 kg/m3, respectively). The moisture content did not show statistical differences (p > 0.05) between barked and debarked sawdust. The volatile material was higher (p < 0.05) in debarked sawdust (88.7%) than in barked sawdust (85.0%). The ash content was below 0.5%. The fixed carbon was higher (p < 0.05) in barked sawdust (14.6%). The calorific value was higher (p < 0.05) in barked sawdust and for the Q. rugosa species (19.5 MJ/kg). The results suggest that the oak species analyzed, both barked and debarked, showed good potential for pellet production. Future studies should quantify fuel quality for a variety of diameter distributions, and analyze pellet mechanical properties and ash slagging risk.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1044 ◽  
Author(s):  
Marco Manzone ◽  
Fabrizio Gioelli ◽  
Paolo Balsari

Baled pruning residue could be a valid solution to reduce the storage surface area in thermal and electrical power station. This study aimed to analyze the storage performance of pruning residues baled by a round baler considering three orchard tree species (apple, peach, and kiwi) and three different techniques (uncovered, under roof, and wrapped). The storage parameters considered were: moisture content, dry mass, and wood energy content of the material. The initial moisture content of the tree orchard specie (apple, peach, and kiwi) was different: lower for peach (41%) and higher for kiwi (51%). At the end of the storage period, all bales (covered and uncovered) obtained similar values to that of the air (about 20%); wrapped bales have highlighted no moisture content variation. The tested tree species showed a similar initial high heating value (18.70 MJ·kg−1), but a different initial low heating value: lower for kiwi (7.96 MJ kg−1) and higher for peach (10.09 MJ·kg−1). No dry matter losses were observed in all test. Stored pruning residues in bales show good benefits in term of “biofuel” quality independent of the techniques adopted expect for the wrapping system that do not permit adequate drying of the biomass.


Author(s):  
O. A. Sotannde ◽  
A. M. Dadile ◽  
M. Umar ◽  
S. M. Idoghor ◽  
B. D. Zira

Aims: The study explored the combustion properties of woods and barks of some selected trees and the mixtures of the two in order to map out how fuel material composition affect the combustion properties of biomass materials. Study Design: The study is a two-factor factorial experiment in a completely randomized design. The main factors are the tree species and fuel material types. Place and Duration of Study: Tree samples used for this study were coppiced stems harvested from smallhold farm plots along the Damaturu - Gujba fuelwood corridors in Yobe State. The analytical study was carried out in Wood and Fibre Science Laboratory of the Department of Forestry and Wildlife, University of Maiduguri, Nigeria between April 2018 and December 2019. Methodology: Ten tree species were used for this study. Each species was replicated 3-times, making a total of 30 stems with their dbh between 10 and 15 cm. A sample billet of 20 cm log was cut from each stem at 10 cm below and above dbh. Each billet was debarked, chipped separately and dried to approximately 12% moisture content. From the chips, 100% wood, 95%W-5%B, 90%W-10%B and 100% bark fuel material samples were created, grinded with mechanical grinder and sieved to approximately 0.4 mm particle size based on ASTM D2013-86. The sieved samples obtained were then analyzed for their percentage moisture content, volatile matter, fixed carbon, ash and gross calorific values using ASTM standard methods. The data obtained were subjected to Analysis of variance from which % variance component and LSD were computed α = 0.05 and 0.01 level of significance. Results: All the measured parameters varied significantly among the tree species and the compositions of the fuel materials obtained from them. Majority of the variation in the fuelwood properties were attributed to the composition of the fuel materials obtained from the trees rather than the species they were made of. On the average, moisture content of the samples ranged from 27.66 to 40.44%, volatile matter (61.38 to 75.11%), ash (0.52 to 2.42%), fixed carbon (24.19 to 36.20%) and gross calorific value (32.99 to 33.02 MJ.kg-1). The moisture and ash contents of the fuel materials obtained from all the tree species increased with the level of bark inclusion whereas, volatile matter content and gross calorific values decreased significantly with level of bark inclusion (P < 0.05). Also, gross calorific value of the fuel materials correlates positively with volatile matter and fixed carbon contents. But, correlate negatively with moisture and ash contents. Among the studied tree species, chips obtained from A. leiocarpus had the highest energy value, followed by C. arereh and B. aegyptiaca while P. reticulatum, A. sieberiana and C. lamprocarpum had the least energy value in that order. Conclusion: Based on their energy value and ash content, minimizing the bark content in wood chips is important from energy and environment point of view. Therefore, chips with 100% wood and those with 5% bark inclusions are recommended for heat generation.


2018 ◽  
Vol 2 (1) ◽  
pp. 91-100
Author(s):  
Sofia Mustamu ◽  
Gysberth Pattiruhu

Biopelet is one of the renewable energy alternatives that have uniformity of size, shape, density, and energy content. The purpose of this study was to examine the characteristics of biopelet consisting of a mixture of cajeput and gondorukem, and to determine the composition of the raw materials that can produce a biopelet with the best quality. The compositions of a mixture in this research are as follow 95%:5%, 90%:10%, 80%:20%, 70%:30%, 60%:40%, 50%:50%, cajeput 100% and gondorukem 100%. The manufacture of biopelet used a 20 mesh of dust with the pressure of 526.4 kg/cm2  at a temperature of 200 ◦C for 15 minutes. Types of tests performed on biopelet include density, moisture content, volatile matter, ash content, carbon bonded, and calorific value. The results of the best quality of biopelet was in the percentage of cajeput and gondorukem was 70%:30%,  tests showed densities of biopelet 0,84 g/cm3, moisture content5,89%, ash content 2,42%, volatile matter 73,99%, fixed carbon 18,96%, and calorific value 5152 kkal/kg.


2020 ◽  
Vol 41 (2) ◽  
pp. 277-286
Author(s):  
Erik Anerud ◽  
Gunnar Larsson ◽  
Lars Eliasson

To make forest biomass more competitive, increased efficiency in the handling and supply system is needed, thus producing high-quality fuel at a lower cost. Operating costs can be reduced if the target chip size is increased, as this increases productivity and reduces chipper fuel consumption. However, the chips need to be storedin order to meet fluctuating seasonal demand and maintain high machine utilisation. Due to biomass degradation, storage of comminuted biomass can lead to high energy losses, but can also increase fuel quality, e.g. by reducing moisture content and increasing net calorific value. This study evaluated the effects of storage on dry matter losses and differences in fuel quality of the stored biomass for three target chip sizes and three materials during six months of storage. The results showed that coarse chips had significantly lower moisture content and lower energy losses after storage than fine chips. Overall, changes during storage resulted in an economic loss of 3–4% per oven-dry ton for fine chips, but an economic gain of 2–6% for coarse chips. Thus increased target chip size can increase the competitiveness of forest biomass through decreased production costs and reduced storage costs. It can also ensure higher, more consistent fuel quality.


2011 ◽  
Vol 312-315 ◽  
pp. 971-976 ◽  
Author(s):  
J. Barbosa da Silva ◽  
G. Silva Almeida ◽  
W.C.P. Barbosa de Lima ◽  
Gelmires Araújo Neves ◽  
Antônio Gilson Barbosa de Lima

The Aim of this Work Is to Present a Three-Dimensional Mathematical Modelling to Predict Heat and Mass Transport inside the Industrial Brick with Rectangular Holes during the Drying Including Shrinkage and Hygrothermalelastic Stress Analysis. the Numerical Solution of the Diffusion Equation, Being Used the Finite-Volume Method, Considering Constant Thermo-Physical Properties and Convective Boundary Conditions at the Surface of the Solid, it Is Presented and Analyzed. Results of the Temperature, Moisture Content and Stress Distributions, and Drying and Heating Kinetics Are Shown and Analyzed. Results of the Average Moisture Content and Surface Temperature of the Brick along the Drying Process Are Compared with Experimental Data (T = 80.0oC and RH = 4.6 %) and Good Agreement Was Obtained. it Was Verified that the Largest Temperature, Moisture Content and Stress Gradients Are Located in the Intern and External Vertexes of the Brick.


2020 ◽  
Vol 190 ◽  
pp. 00030
Author(s):  
Qurrotin Ayunina Maulida Okta Arifianti ◽  
Azmi Alvian Gabriel ◽  
Syarif Hidayatulloh ◽  
Kuntum Khoiro Ummatin

The current research aimed to increase the calorific value of woody cutting waste briquette with paper waste pulp as binder. There were three different binder variation used in this study, they are 5 %, 10 %, and 15 %. To create a briquette, a cylindrical iron mold with diameter of 3.5 cm and height of 3 cm and a hydraulic press with 2 t power were applied. The physical characteristics of the combination woody waste briquette and paper waste pulp, such as moisture content, ash content, volatile matter and carbon fix were examined using proximate analysis. The calorific value of briquetted fuel was tested by bomb calorimeter. The combustion test was performed to determine the combustion characteristic of briquettes, for example initial ignition time, temperature distribution, and combustion process duration. The general result shows that the calorific value of briquette stood in the range of 4 876 kCal kg–1 to 4 993 kCal kg–1. The maximum moisture content of briquette was 5.32 %. The longest burning time was 105 min.


Sign in / Sign up

Export Citation Format

Share Document