scholarly journals Effect of copper on the dynamics of the increment of plant dry mass and on some physiological processes in sunflower (Helianthus annuus L.)

2013 ◽  
Vol 36 (1-2) ◽  
pp. 5-16
Author(s):  
U. Wojcieska ◽  
E. Wolska ◽  
M. Ruszkowska

Experiments were undertaken in order to establish the influence of copper on the growth and yield of plants. Sunflower (<i>Helianthus annuus</i> L.) was grown in pots with peat enriched with mineral elements with the excluding of Cu. Copper was applied immediately after plant germination in doses of 0, 5 and 125 mg Cu per pot. In the form of CuSO<sub>4</sub>. During the vegetation period the following determinations were made: (a) dynamics of the increase of plant dry matter and of the assimilative surface, (b) chlorophyll content, (c) nitrate reductase activity and (d) intensity of photosynthesis and photosynthetic activity. The results indicate that copper deficit restricts the process of photosynthesis and the dynamics of dry mass increment. Differences in copper dosage did not have an immediate influence on the chlorophyll content and nitrate reductase activity, only rather an intermediate effect through the influence on the process of ageing.

Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 772
Author(s):  
Zongkui Chen ◽  
Hongyun Gao ◽  
Fei Hou ◽  
Aziz Khan ◽  
Honghai Luo

The changing climatic conditions are causing erratic rains and frequent episodes of moisture stress; these impose a great challenge to cotton productivity by negatively affecting plant physiological, biochemical and molecular processes. This situation requires an efficient management of water-nutrient to achieve optimal crop production. Wise use of water-nutrient in cotton production and improved water use-efficiency may help to produce more crop per drop. We hypothesized that the application of nitrogen into deep soil layers can improve water-nitrogen productivity by promoting root growth and functional attributes of cotton crop. To test this hypothesis, a two-year pot experiment under field conditions was conducted to explore the effects of two irrigation levels (i.e., pre-sowing irrigation (W80) and no pre-sowing irrigation (W0)) combined with different fertilization methods (i.e., surface application (F10) and deep application (F30)) on soil water content, soil available nitrogen, roots morpho-physiological attributes, dry mass and water-nitrogen productivity of cotton. W80 treatment increased root length by 3.1%–17.5% in the 0–40 cm soil layer compared with W0. W80 had 11.3%–52.9% higher root nitrate reductase activity in the 10–30 cm soil layer and 18.8%–67.9% in the 60–80 cm soil layer compared with W0. The W80F10 resulted in 4.3%–44.1% greater root nitrate reductase activity compared with other treatments in the 0–30 cm soil layer at 54–84 days after emergence. Water-nitrogen productivity was positively associated with dry mass, water consumption, root length and root nitrate reductase activity. Our data highlighted that pre-sowing irrigation coupled with basal surface fertilization is a promising option in terms of improved cotton root growth. Functioning in the surface soil profile led to a higher reproductive organ biomass production and water-nitrogen productivity.


2001 ◽  
Vol 137 (3) ◽  
pp. 307-318 ◽  
Author(s):  
S. KATHJU ◽  
U. BURMAN ◽  
B. K. GARG

Effects of nitrogen fertilization (80 kg N/ha) were studied on pearl millet (Pennisetum glaucum) genotypes including hybrids (MH-179 and HHB-67), composites (CZ-IC-923 and CZP-9604) and land races (Barmer population and CZ-IC-718) grown for 2 consecutive years (1997 and 1998) under rainfed conditions of the Indian arid zone. Nitrogen application significantly increased the grain and stover yields in all the genotypes, particularly in the hybrids during both the years but more so in 1997, characterized by late onset of rains followed by adequate precipitation (299·5 mm). Notwithstanding lower plant water potential and leaf relative water content, N fertilized plants displayed significantly higher photosynthetic rates, leaf area, levels of total chlorophyll, starch, reducing sugars, soluble protein and free amino acids and nitrate reductase activity as compared with unfertilized control plants in all the genotypes during both the years.Genotypes HHB-67 and Barmer population during 1997 and HHB-67 and CZ-IC-718 during 1998 provided significantly higher grain yields than other genotypes whereas dry matter production was highest in cv. Barmer population during both the years. These genotypes generally maintained higher rates of photosynthesis, more efficient carbohydrate metabolism and higher nitrate reductase activity leading to better performance. Relatively higher yields of land races than composites and comparable with those of hybrids indicated adaptation of these cultivars to arid conditions and maintenance of several characteristics for their superior performance which could be further augmented by N application.Fertility induced improvement of metabolic efficiency, coupled with higher photosynthesis and nitrate reductase activity for efficient N utilization seem to be the control mechanisms, for enhanced growth and yield of diverse pearl millet genotypes under limited water conditions.


1986 ◽  
Vol 16 (6) ◽  
pp. 1165-1169 ◽  
Author(s):  
P. Högberg ◽  
A. Granström ◽  
T. Johansson ◽  
A. Lundmark-Thelin ◽  
T. Näsholm

The nitrate reductase activity of Deschampsiaflexuosa (L.) Trin., an evergreen grass species common in northern coniferous forests, was tested as an indicator of nitrate availability in forest soils. A positive linear correlation (correlation coefficient significantly different from zero, p < 0.01) was found between nitrate supply and nitrate reductase activity in shoots of seedlings in sand cultures. Throughout a vegetation period the nitrate reductase activity of D. flexuosa was constantly 2–16 times higher in a clear-cut area as compared with an adjacent forest. High enzyme activity, however, indicated significant amounts of nitrate also in the forest during spring and autumn. On plots heavily fertilized with urea the nitrate reductase activity was up to three times higher than on control plots, which suggests considerable nitrate formation on the former. The plant nitrate reductase activity method seemed to be an inexpensive, rapid, nondisturbing, semiquantitative indicator of nitrate availability in soils, particularly for time-course studies and in comparisons between experimental plots. Tests of maximal induction of nitrate reductase activity can reveal to what extent factors other than the supply of nitrate are limiting the activity.


2019 ◽  
Vol 87 (1) ◽  
Author(s):  
Dian Mutiara AMANAH ◽  
Nurhaimi HARIS ◽  
Laksmita Prima SANTI

Silica (Si) in the form of soluble silicic acid [H4SiO4] was an element that makes plants more resistant to drought stress through biochemical or molecular processes and contributing to growth stimulation under biotic and abiotic stress conditions. The objective of this study was to determine the response of oil palm seedlings to drought stress by the bio-Si application. The experiment was arranged in complete random design (CRD) with ten replicates.  Bio-Si was developed in solid and liquid forms with a dissolved Si content at least 10% (w/v). The eight combinations of solid bio-Si application per seedling were: (i) blank (without fertilizers), (ii) 5 g NPK 15-15-15, (iii) 5 g NPK 15-15-15 + 109cfu of Si-solubilizing microbes (SSM), (iv-viii) 5 g NPK 15-15-15 + 2.5; 5.0; 7.5; 10 g bio-Si; and 5 g Na2SiO3.  On the other hand, liquid bio-Si application per seedling were: (i) blank (without fertilizers), (ii) 5 g NPK 15-15-15, (iii) 5 g NPK 15-15-15 + 109cfu of SSM, (iv-viii) 5 g NPK 15-15-15 + 25 mL; 50 mL; 75 mL; 100 mL bio-Si; and 50 mL Na2SiO3. Drought stress tolerance was analyzed by using proline concentration, nitrate reductase activity (NRA), chlorophyll content, and stomatal closure in the leave of oil palm seedlings. Based on the physiological response, this research indicates that bio-Si application could induce seedling tolerance to drought stress. The bio-Si treatments gave a positive response of proline concentration, nitrate reductase activity (NRA), chlorophyll content, and stomatal closure. The doses of 5 g NPK 15-15-15 + 7.5 g solid bio-Si and 5 g NPK 15-15-15 + 75 mL liquid bio-Si per seedling were a recommended to increase oil palm seedlings tolerance to drought stress.[Key words: bio-Si, chlorophyll, nitrate reductase activity, Si-solubilizing microbes]. AbstrakSilika (Si) dalam bentuk terlarut asam silikat [H4SiO4]merupakan unsur yang dapat menyebabkan tanaman lebih tahan terhadap cekaman kekeringan melalui proses biokimia atau molekuler dan menstimulasi pertumbuhan dalam kondisi cekaman biotik dan abiotik. Tujuan dari penelitian ini adalah mengetahui respons fisiologi bibit kelapa sawit yang diberi bio-Si terhadap cekaman kekeringan. Penelitian didesain dengan rancangan acak lengkap (RAL) dan sepuluh ulangan. Bio-Si dikembangkan dalam bentuk padat dan cair dengan kadar Si terlarut minimal 10 % (b/v). Delapan aplikasi bio-Si padat per bibit adalah: (i) blanko (tanpa pupuk), (ii) 5 g NPK 15-15-15, (iii) 5 g NPK 15-15-15 + 109cfu mikrob pelarut silika, (iv-viii) 5 g NPK 15-15-15 + 2,5 g; 5,0 g; 7,5 g; 10 g bio-Si, dan 5 g Na2SiO3. Sementara untuk aplikasi bio-Si cair per bibit adalah: (i) blanko (tanpa pupuk), (ii) 5 g NPK 15-15-15, (iii) 5 g NPK  15-15-15 + 109cfu mikroorganisme pelarut silika (MPS), (iv-viii) 5 g NPK 15-15-15 + 25 ml; 50 ml; 75 ml; dan 100 mLbio-Si, dan 50 ml Na2SiO3. Pengamatan yang dilakukan meliputi analisis prolin, aktivitas nitrat reduktase (ANR), kandungan klorofil, serta morfologi stomata pada daun bibit kelapa sawit. Berdasarkan data fisiologi yang diperoleh dari kegiatan penelitian ini, aplikasi bio-Si dapat meningkatkan ketahanan bibit kelapa sawit terhadap cekaman kekeringan. Perlakuan bio-Si memberikan respon positif terhadap konsentrasi prolin,aktivitas nitrat reduktase (ANR), kandungan klorofil, serta morfologi stomata.Dosis 5 g NPK 15-15-15 + 7,5 g bio-Si padat dan 5 g NPK 15-15-15 + 75 mLbio-Si cair dapat direkomendasikan untuk meningkatkan ketahanan bibit kelapa sawit terhadap cekaman kekeringan.  [Kata kunci: bio-Si, klorofil, aktivitas nitrat reduktase, mikroorganisme pelarut silika].


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
D. Nayeli Martínez ◽  
Erick De la Barrera

Background: Plants take up various species of reactive nitrogen and their different physiological responses to the increase of nitrogen availability can be useful in biomonitoring. Questions: Does atmospheric nitrogen deposition affect the physiology of ruderal weeds? Which species are most responsive to the nitrogen deposition? Studied species: Eleven ruderal weeds. Study site and dates: Morelia, Michoacán, Mexico. 2019. Methods: Under scenarios of 10, 20, 40 and 80 kg N ha-1year-1, we quantified plant responses of biomass production, nitrate reductase activity, chlorophyll content, photosynthetic efficiency, δ15N, nitrogen and carbon content. Results: Total biomass production increased with the rate of nitrogen deposition for Bidens pilosa, Chloris gayana,Lepidium virginicum, and Pennisetum setaceum, as chlorophyll content in B. pilosa, C. gayana, and L. virginicum. In turn, the below- to above-ground biomass ratio decreased for B. pilosa and C. gayana, as photosynthetic efficiency in C. gayana, L. virginicum, and Chloris pycnothrix. Nitrate reductase activity was only affected in L. virginicumm, C. gayana, and T. officinale.    With the exception of C. pycnothrix, the nitrogen content increased, while the carbon augmented in C. gayana, C. pycnothrix, and P. setaceum. The C/N ratio was reduced in B. pilosa, C. gayana, Chloris virgata, P. setaceum, and T. officinale. The δ15N was increased in B. pilosa, C. gayana, C. virgata and P. setaceum. Conclusions: Bidens pilosa, C. gayana, L. virginicum, and P. setaceum were the species with more affected variables to nitrogen deposition, which could be useful in the biomonitoring.


2013 ◽  
Vol 18 (1-2) ◽  
pp. 61-68
Author(s):  
Marek Krywult ◽  
Anna Salachna ◽  
Damian Chmura ◽  
Jan Żarnowiec

Abstract Two species of mosses in relation to nitrogen metabolism were examined. This subject is little known in this group of plant. Investigations of nitrate reductase activity in green tissues of Brachythecium rutabulum (Hedw.) Schimp. and Atrichum undulatum (Hedw.) P.Beauv. were performed. The study was conducted in two localities: heavy contaminated waste tip Skalny located in Upper Silesia, and Blonia City Park in Bielsko-Biala which place was chosen as a control area. For both species high activity of the enzyme was detected. The nitrate reductase activity varied between 99 to 9093 nmol per g dry mass per hour for B. rutabulum and 265 to 5135 nmol per g d.m. per hour of nitrite synthesized for A. undulatum respectively on Skalny waste tip. In the control area the results varied between 747 to 1077 for B. rutabulum and 171 to 518 nmol per g d.m. per hour of nitrite synthesized for A. undulatum, respectively. The differences were statistically significant only between the two species but not between habitats probably due to high dispersion and small amount of replications. The levels of nitrate and nitrite in stream water in both areas were also measured. In the Skalny waste tip there were high and reached 1.66 mg · dm-3 of nitrite and 65 mg · dm-3 of nitrate, respectively. In the control area these amounts were lower and reach zero level for nitrite and 4.5 mg · dm-3 of nitrate, respectively.


Author(s):  
Jagdish Kumar Nagda ◽  
Nishant A. Bhanu ◽  
Nishant A. Bhanu ◽  
Deepmala Katiyar ◽  
Akhouri Hemantaranjan ◽  
...  

The present investigation was carried out to examine the role of exogenously applied ascorbic acid which mitigates the deleterious effects of salt stress in mungbean (Vigna radiata L.) genotype HUM-1. Plants grown under induced salinity stress at 150 mM NaCl were treated with different concentration of ascorbic acid, i.e., 0.5 mM, 1.0 mM and 2.0 mM. To study the effects of treatments of salt stress on chlorophyll content, proline content, nitrate reductase activity, superoxide dismutase activity and yield attributes data were recorded at 20, 40, 60 day after sowing. Nitrate reductase activity and chlorophyll content with 1.0 mM ascorbic acid under salinity (150 mM NaCl) while the activities of superoxide dismutase get reduced up to 43.71% at 40 days after sowing. In plant treated with combined treatment of 150 mM NaCl and 1.0 mM foliar applied ascorbic acid caused a decline in the level of proline, which was 3.38 mg, 3.35 mg and 6.30 mg at 20, 40 and 60 days after sowing. The threshold level of ascorbic acid was 150 mM NaCl along with 1.0 mM ascorbic acid, that improved the yield attributes under salinity. Ascorbic acid inhibits the adverse effect of NaCl for growth and development of plants. So ascorbic acid may be a promising treatment to ameliorate the deleterious effects of salt stress in crops.


2019 ◽  
Vol 3 (3) ◽  
pp. 135
Author(s):  
Nasrudin Nasrudin ◽  
Budiastuti Kurniasih

Increased productivity of rice is required to meet the increasing food demand. Utilization of marginal lands, such as saline land is one of the solutions applicable to increase rice production. The objective of this study was to determine the growth and yield of Inpari 29 rice variety planted on raised-bed and different depths of sunken-bed in saline field. This study used the Split Plot Design with two treatments. The depth as the main plot consisted of two depth levels: a depth of 50 cm and a depth of 25; and the planting area field as the subplot that consisted of two levels: raised-bed and sunken-bed. The treatment was repeated three times. The rice planted in sunken-bed showed higher growth than in raised-bed as indicated by the high content of chlorophyll a, chlorophyll b, total chlorophyll, nitrate reductase activity and plant height. The rice planted in the sunken-bed yielded higher than in raised-bed as indicated by higher harvest index and the weight of grain per clump. Rice planted in 25 cm depth showed higher nitrate reductase activity and grain weight per clump than in 50 cm depth.


Sign in / Sign up

Export Citation Format

Share Document