scholarly journals Electrodeposition of the Sb2Se3 thin films on various substrates from the tartaric electrolyte

2019 ◽  
Vol 10 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Vusala Asim Majidzade ◽  
Akif Shikhan Aliyev ◽  
Parvin Haydar Guliyev ◽  
Dunya Mahammad Babanly

The present contribution is devoted to the electrochemical deposition of Sb2Se3 thin films from tartrate electrolyte. The study was conducted by potentiodynamic, potentiostatic and galvanostatic methods carried out under different conditions at Pt, Cu and Ni electrodes. The kinetics and mechanism of the electroreduction of antimony and selenite ions in the tartaric acid were studied separately for the electrochemical deposition. Comparison of the obtained polarization curves showed that co-deposition occurs between electroreduction potentials of antimony and selenium, indicating depolarization electrode effect for antimony ions. The influence of electrolyte compo­sition, pH, current density, temperature, etc. has been studied. On the basis of cyclic polarization, X-ray phase and SEM-EDX analyses, it is found that Sb-Se thin films are deposited on Pt and Ni electrodes, but not on Cu electrode. Black, uniform, crystalline and shiny films of the stoichiometric composition of Sb2Se3 compound are deposited on Pt and Ni electrodes within the 338-348 K temperature interval, pH 1.85, current density of 2.5-3.0 A/dm2, and annealing temperature of 703 K. Experiments were carried out using the optimal electrolyte composition containing 0.05 M SbOCl + 0.05 M H2SeO3 + 0.007 M C4H6O6.

Author(s):  
F. Ma ◽  
S. Vivekanand ◽  
K. Barmak ◽  
C. Michaelsen

Solid state reactions in sputter-deposited Nb/Al multilayer thin films have been studied by transmission and analytical electron microscopy (TEM/AEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The Nb/Al multilayer thin films for TEM studies were sputter-deposited on (1102)sapphire substrates. The periodicity of the films is in the range 10-500 nm. The overall composition of the films are 1/3, 2/1, and 3/1 Nb/Al, corresponding to the stoichiometric composition of the three intermetallic phases in this system.Figure 1 is a TEM micrograph of an as-deposited film with periodicity A = dA1 + dNb = 72 nm, where d's are layer thicknesses. The polycrystalline nature of the Al and Nb layers with their columnar grain structure is evident in the figure. Both Nb and Al layers exhibit crystallographic texture, with the electron diffraction pattern for this film showing stronger diffraction spots in the direction normal to the multilayer. The X-ray diffraction patterns of all films are dominated by the Al(l 11) and Nb(l 10) peaks and show a merging of these two peaks with decreasing periodicity.


2012 ◽  
Vol 501 ◽  
pp. 236-241 ◽  
Author(s):  
Ftema W. Aldbea ◽  
Noor Bahyah Ibrahim ◽  
Mustafa Hj. Abdullah ◽  
Ramadan E. Shaiboub

Thin films nanoparticles TbxY3-xFe5O12 (x=0.0, 1.0, 2.0) were prepared by the sol-gel process followed by annealing process at various annealing temperatures of 700° C, 800° C and 900° C in air for 2 h. The results obtained from X-ray diffractometer (XRD) show that the films annealed below 900°C exhibit peaks of garnet mixed with small amounts of YFeO3 and Fe2O3. Pure garnet phase has been detected in the films annealed at 900°C. Before annealing the films show amorphous structures. The particles sizes measurement using the field emission scanning electron microscope (FE-SEM) showed that the particles sizes increased as the annealing temperature increased. The magnetic properties were measured at room temperature using the vibrating sample magnetometer (VSM). The saturation magnetization (Ms) of the films also increased with the annealing temperature. However, different behavior of coercivity (Hc) has been observed as the annealing temperature was increased.


Coatings ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 118 ◽  
Author(s):  
Ho-Yun Lee ◽  
Chi-Wei He ◽  
Ying-Chieh Lee ◽  
Da-Chuan Wu

Cu–Mn–Dy resistive thin films were prepared on glass and Al2O3 substrates, which wasachieved by co-sputtering the Cu–Mn alloy and dysprosium targets. The effects of the addition ofdysprosium on the electrical properties and microstructures of annealed Cu–Mn alloy films wereinvestigated. The composition, microstructural and phase evolution of Cu–Mn–Dy films werecharacterized using field emission scanning electron microscopy, transmission electronmicroscopy and X-ray diffraction. All Cu–Mn–Dy films showed an amorphous structure when theannealing temperature was set at 300 °C. After the annealing temperature was increased to 350 °C,the MnO and Cu phases had a significant presence in the Cu–Mn films. However, no MnO phaseswere observed in Cu–Mn–Dy films at 350 °C. Even Cu–Mn–Dy films annealed at 450 °C showedno MnO phases. This is because Dy addition can suppress MnO formation. Cu–Mn alloy filmswith 40% dysprosium addition that were annealed at 300 °C exhibited a higher resistivity of ∼2100 μΩ·cm with a temperature coefficient of resistance of –85 ppm/°C.


Author(s):  
В.Н. Горяева ◽  
Р.А. Бисенгалиев

The features of electrochemical deposition of metal coatings on hole silicon are presented, and the properties of the obtained metal layers are measured. The dependence of the thickness of the depleted region and the internal voltage drop in it on the composition of the electrolyte and the type of precipitated metal was investigated. The effect of current density and electrolyte composition on the properties of precipitation is proved. By selection of the electrolyte pretreatment and the deposition mode, metal precipitates with acceptable adhesion and low longitudinal resistance were obtained.


2013 ◽  
Vol 770 ◽  
pp. 225-228
Author(s):  
L. Uttayan ◽  
K. Aiempanakit ◽  
M. Horprathum ◽  
P. Eiamchai ◽  
V. Pattantsetakul ◽  
...  

Titanium dioxide (TiO2) films were prepared by thermal oxidation from Ti films. The Ti films were deposited on glass and silicon (100) wafer substrate by dc magnetron sputtering and subsequent with thermal oxidation process. The crystal structure and morphology of TiO2 films were estimated by using X-ray diffractometry (XRD) and field-emission scanning electron microscopy (FE-SEM), respectively. The optical property of TiO2 films was determined by UV-Visible spectrophotometer. The influences of annealing temperature between 200 to 500°C in air for 1 hour on the structure and optical properties of TiO2 films were investigated. The increasing of annealing temperature was directly affected the phase transition from Ti to TiO2. The optical and structural properties of TiO2 films are the best exhibited with increasing the annealing temperature at 500 °C.


Author(s):  
Emna Gnenna ◽  
Naoufel Khemiri ◽  
Minghua Kong ◽  
Maria Isabel Alonso ◽  
Mounir Kanzari

Sb2S3 powder was successfully synthesized by solid state reaction technique using high-purity elemental antimony and sulfur. Sb2S3 thin films were deposited on unheated glass substrates by one step thermal evaporation and annealed under vacuum atmosphere for 2 hours at different temperatures 150, 200 and 250 °C. Different characterization techniques were used to better understand the behavior of the Sb2S3 material. X-ray diffraction (XRD) and Raman spectroscopy confirmed the formation of pure Sb2S3 powder with lattice parameters a = 11.07 Å, b = 11.08 Å and c = 3.81 Å. The effect of vacuum annealing temperature on the properties of the films was studied. XRD analysis revealed that as-deposited and annealed films at 150ºC were amorphous in nature whereas those annealed at T ≥ 200°C were polycrystalline with a preferred orientation along (201) plane. The crystallite size of the polycrystalline films showed a decrease from 75.8 to 62.9 nm with the increase of the annealing temperature from 200 to 250 °C. The Raman analysis showed several peaks corresponding to the stibnite Sb2S3 phase. The surface morphology of the films was examined by atomic force microscopy (AFM). The surface roughness decreases slightly as the transformation from the amorphous to the crystalline phase occurs. The chemical compositions of Sb2S3 films were analyzed by energy dispersive X-ray spectroscopy (EDS), revealing that all films were Sb-rich. The optical parameters were estimated from the transmittance and reflectance spectra recorded by UV-Vis spectroscopy. A reduction in the direct band gap energy from 2.12 to 1.70 eV with the increase of annealing temperature was also found.


2019 ◽  
Vol 397 ◽  
pp. 118-124
Author(s):  
Linda Aissani ◽  
Khaoula Rahmouni ◽  
Laala Guelani ◽  
Mourad Zaabat ◽  
Akram Alhussein

From the hard and anti-corrosions coatings, we found the chromium carbides, these components were discovered by large studies; like thin films since years ago. They were pointed a good quality for the protection of steel, because of their thermal and mechanical properties for this reason, it was used in many fields for protection. Plus: their hardness and their important function in mechanical coatings. The aim of this work joins a study of the effect of the thermal treatment on mechanical and structural properties of the Cr/steel system. Thin films were deposited by cathodic magnetron sputtering on the steel substrates of 100C6, contain 1% wt of carbon. Samples were annealing in vacuum temperature interval between 700 to 1000 °C since 45 min, it forms the chromium carbides. Then pieces are characterising by X-ray diffraction, X-ray microanalysis and scanning electron microscopy. Mechanical properties are analysing by Vickers test. The X-ray diffraction analyse point the formation of the Cr7C3, Cr23C6 carbides at 900°C; they transformed to ternary carbides in a highest temperature, but the Cr3C2 doesn’t appear. The X-ray microanalysis shows the diffusion mechanism between the chromium film and the steel sample; from the variation of: Cr, Fe, C, O elements concentration with the change of annealing temperature. The variation of annealing temperature shows a clean improvement in mechanical and structural properties, like the adhesion and the micro-hardness.


2011 ◽  
Vol 383-390 ◽  
pp. 822-825
Author(s):  
Ping Luan ◽  
Jian Sheng Xie ◽  
Jin Hua Li

Using magnetron sputtering technology, the CuInSi thin films were prepared by multilayer synthesized method. The structure of CuInSi films were detected by X-ray diffraction(XRD), the main crystal phase peak is at 2θ=42.458°; The resistivity of films were measured by SDY-4 four-probe meter; The conductive type of the films were tested by DLY-2 conductivity type testing instrument. The results show that the annealing temperature and time effect on the crystal resistivity and crystal structure greatly.


2012 ◽  
Vol 326-328 ◽  
pp. 583-586
Author(s):  
R. Gheriani ◽  
Raouf Mechiakh

The mainly property of thin solid films technologies is their adhesion to the substrates. Because of its good wear resistance and its low coefficient of friction against steel, TiC is an attractive coating material for wear applications such as bearing components. The adhesion of TiC coatings, however suffers from insufficient reproducibility, which is probably due to uncontrolled process parameters. In our work pure titanium thin films of approximately 0.6 µm in thickness were prepared on 100C6 stainless steel substrates by cathodic sputtering. The samples were subjected to secondary vacuum annealing at a temperature between 400 and 1000°C for 30 min. The reaction between substrates and thin films was characterized using an x-ray diffractometer (XRD). Surface morphology and elements diffusion evaluations were carried out by scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). The interaction substrates-thin films is accompanied by nucleation and growth of titanium carbide as a function of annealing temperature. By the SEM and EDS results, it appears clearly that the diffusion of manganese to the external layers leads to the destruction of adhesion especially at high temperatures.


Sign in / Sign up

Export Citation Format

Share Document