Coatings with carbon nanostructures with hydrophobic properties made by anodizing and the CVD method on stainless steel

2018 ◽  
Vol 23 (2) ◽  
pp. 30-37
Author(s):  
Zofia Buczko ◽  
Klaudia Olkowicz ◽  
Piotr Tomassi ◽  
Tadeusz Żółciak

The method of anodic oxidation of stainless steel and the subsequent deposition of carbon layers in the CVD processes resulted in obtaining the coatings with hydrophobic and superhydrophobic properties. The parameters of the CVD process were modified and various carbon structures, including graphene type ones, were obtained. The coatings were characterised by Raman spectra and SEM microscopy. The wettability of the surface was evaluated by investigating a contact angle. The samples containing carbon coatings showed hydrophobic properties, and those containing graphene structures were characterized by the contact angle greater than 150°, which means superhydrophobic properties.

Author(s):  
Sonal Mazumder ◽  
Suvojit Ghosh ◽  
Joseph O. Falkinham ◽  
Ishwar K. Puri

Carbon nanostructures were synthesized and deposited through flame synthesis on stainless steel grids and foils, and on bare and ferrofluid-painted silicon wafers at different nonpremixed flame locations to produce hydrophobic surfaces. The hydrophobicity is characterized through the contact angle for water droplets placed on the surface. The surface morphology of the nanoparticles is obtained from high-resolution FESEM images. Following synthesis and deposition the adherence, activity, and stability of bacterial cells, antibodies, and enzymes on the carbon nanostructures can be studied.


2013 ◽  
Vol 83 (5) ◽  
pp. 877-884 ◽  
Author(s):  
Xiaomo Liu ◽  
Peng Ding ◽  
Jiuxiang Lin

ABSTRACT Objective: To explore how the position of the bracket slots relative to the archwire influences the friction between them, and how bracket design affects the critical contact angle (θc). Materials and Methods: Two kinds of stainless steel archwires (0.016 and 0.019 × 0.025-inch) were tested against four kinds of brackets (Transmission Straight Archwire bracket, Domestic MBT bracket, Tip-Edge Plus bracket, and BioQuick self-ligation bracket) in the dry state. Resistance to sliding (RS) was measured as an increase in contact angle (θ). The value of θc was calculated by two linear regression lines. Results: Friction remained stable when θ < θc, then increased linearly when θ > θc. The θc values of the Tip-Edge Plus bracket and Transmission Straight Archwire bracket were significantly larger than those for the Domestic MBT bracket and BioQuick self-ligation bracket. Conclusions: The relationship between the archwire and bracket slot significantly affects the resistance to sliding. The “edge-off” structure of the Tip-Edge Plus bracket and Transmission Straight Archwire bracket could help to increase the θc value, and to expand the passive configuration range.


Author(s):  
Gabriel Morand ◽  
Pascale Chevallier ◽  
Linda Bonilla‐Gameros ◽  
Stéphane Turgeon ◽  
Maxime Cloutier ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2547
Author(s):  
Hyeonwoo Kim ◽  
Suwon Hwang ◽  
Taeseung Hwang ◽  
Jung Bin In ◽  
Junyeob Yeo

Here, we demonstrate the fabrication of a flexible and transparent micro-supercapacitor (MSC), using colorless polyimide (CPI) via a direct laser writing carbonization (DLWC) process. The focused laser beam directly carbonizes the CPI substrate and generates a porous carbon structure on the surface of the CPI substrate. Fluorine, which is one of the chemical compositions of CPI, can enhance the specific area and the conductivity of the carbon electrode by creating micropores in carbon structures during carbonization. Thus, the fabricated carbonized CPI-based MSC shows enhanced specific capacitance (1.20 mF at 10 mV s−1) and better transmittance (44.9%) compared to the conventional PI-based MSC. Additionally, the fabricated carbonized CPI-based MSC shows excellent cyclic performance with minimal reduction (<~10%) in 3000 cycles and high capacitance retention under mechanical bending test conditions. Due to its high flexibility, transparency, and capacitance, we expect that carbonized CPI-based MSC can be further applied to various flexible and transparent applications.


2021 ◽  
Vol 1040 ◽  
pp. 165-171
Author(s):  
Valeria V. Strokova ◽  
Maria V. Nikulina ◽  
Pavel S. Baskakov ◽  
Alina V. Abzalilova ◽  
Anastasia Y. Esina

The existing methods of confering hydrophobic properties to various building materials are considered. Obtaining special, including hydrophobic, properties of water-emulsion paints is a very relevant task. Previously, a method was developed for producing an emulsion of a polysiloxane stabilized with polyvinyl alcohol. The paper describes the possibility of using a hydrophobisating emulsion of polyhydrosiloxane as a functional additive for an acrylic water-dispersion paint. This emulsion is capable of forming coatings on dense and porous surfaces with an adjustable contact angle up to 105 °. The use of this emulsion, with its sufficient coalescence for volumetric hydrophobization of coatings, makes it possible to obtain a high contact angle on the surface. In the paper, it was assumed that the partial introduction of small amounts (up to 10 %) of a hydrophobizing emulsion into water-dispersion paints would allow achieving the contact angle of wetting for similar coatings consisting exclusively of emulsion. It is shown that the introduction of small amounts of a hydrophobizing emulsion with an auxiliary coalescing action of ethylene glycol makes it possible to impart hydrophobic properties to the surface of the resulting coating. When the optimum concentration of ethylene glycol in the coating is reached, dissolution and transport (yield) of polysiloxane to the surface is ensured. The research carried out made it possible to develop a paint composition with a hydrophobizing emulsion with a contact wetting angle of about 100 °, which ensured the hydrophobicity of the previously hydrophilic coating of a water-dispersion acrylic paint.


2012 ◽  
Vol 562-564 ◽  
pp. 56-59 ◽  
Author(s):  
Jian Zhuang ◽  
Meng Meng Du ◽  
Heng Zhi Cai ◽  
Ya Jun Zhang ◽  
Da Ming Wu

A facile method for manufacturing super hydrophobic surfaces is presented using the stainless steel wire mesh as templates. The rough surfaces of polymers including polycarbonate, polypropylene and PMMA are prepared with hot embossing on different specifications of stainless steel wire mesh. Scanning electron microscopy (SEM) results reveal that the surfaces roughness of the polymers can be controlled by selecting templates. Contact angle measurement shows that the water contact angles(WCA) rise with the increase of surface roughness, especially, the water contact angle on the PC surfaces prepared with specifications of 635mesh screen can reach to 152.3°, alias super hydrophobic surfaces.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2240 ◽  
Author(s):  
Peter Gregorčič ◽  
Marjetka Conradi ◽  
Luka Hribar ◽  
Matej Hočevar

Controlling the surface wettability represents an important challenge in the field of surface functionalization. Here, the wettability of a stainless-steel surface is modified by 30-ns pulses of a Nd:YAG marking laser (λ = 1064 nm) with peak fluences within the range 3.3–25.1 J cm−2. The short- (40 days), intermediate- (100 days) and long-term (1 year) superhydrophilic-to-(super)hydrophobic transition of the laser-textured surfaces exposed to the atmospheric air is examined by evaluating its wettability in the context of the following parameters: (i) pulse fluence; (ii) scan line separation; (iii) focal position and (iv) wetting period due to contact angle measurements. The results show that using solely a short-term evaluation can lead to wrong conclusions and that the faster development of the hydrophobicity immediately after laser texturing usually leads to lower final contact angle and vice versa, the slower this transition is, the more superhydrophobic the surface is expected to become (possibly even with self-cleaning ability). Depending on laser fluence, the laser-textured surfaces can develop stable or unstable hydrophobicity. Stable hydrophobicity is achieved, if the threshold fluence of 12 J cm−2 is exceeded. We show that by nanosecond-laser texturing a lotus-leaf-like surface with a contact angle above 150° and roll-off angle below 5° can be achieved.


2018 ◽  
Vol 18 (1) ◽  
pp. 1
Author(s):  
Romaya Sitha Silitonga ◽  
Nurul Widiastuti ◽  
Juhana Jaafar ◽  
Ahmad Fauzi Ismail ◽  
Muhammad Nidzhom Zainol Abidin ◽  
...  

Poly(vinylidene fluoride) (PVDF) has outstanding properties such as high thermal stability, resistance to acid solvents and good mechanical strength. Due to its properties, PVDF is widely used as a membrane matrix. However, PVDF membrane is hydrophobic properties, so as for specific applications, the surface of membrane needs to be modified to become hydrophilic. This research aims to modify PVDF membrane surface with chitosan and glutaraldehyde as a crosslinker agent. The FTIR spectra showed that the modified membrane has a peak at 1655 cm-1, indicating the imine group (–N=C)- that was formed due to the crosslink between amine group from chitosan and aldehyde group from glutaraldehyde. Results showed that the contact angle of the modified membrane decreases to 77.22° indicated that the membrane hydrophilic properties (< 90°) were enhanced. Prior to the modification, the contact angle of the PVDF membrane was 90.24°, which shows hydrophobic properties (> 90°). The results of porosity, Ɛ (%) for unmodified PVDF membrane was 55.39%, while the modified PVDF membrane has a porosity of 81.99%. Similarly, by modifying the PVDF membrane, pure water flux increased from 0.9867 L/m2h to 1.1253 L/m2h. The enhancement of porosity and pure water flux for the modified PVDF membrane was due to the improved surface hydrophilicity of PVDF membrane.


The Analyst ◽  
2014 ◽  
Vol 139 (9) ◽  
pp. 2114-2117 ◽  
Author(s):  
Xiulan He ◽  
Li Zhang ◽  
Hetong Qi ◽  
Ping Yu ◽  
Junjie Fei ◽  
...  

We have demonstrated a new strategy to improve the fluorescence detection limit by enhancing the energy transfer efficiency between carbon structures and fluorescent dyes using polyimidazolium-functionalized carbon nanostructures as a low background signal platform.


Sign in / Sign up

Export Citation Format

Share Document