KINEMATICS OF LOWER LIMBAND PELVIC WORK DURING RUNNING IN NEUTRAL AND MINIMALIST FOOTWEAR AMONG A GROUP OF HIGHLY QUALIFIED RUNNERS

2018 ◽  
Vol 28 (83) ◽  
pp. 45-53
Author(s):  
Wiesław Chwała ◽  
Wacław Mirek ◽  
Andrzej Klimek ◽  
Krzysztof Mirek

Aim. The aim of the study is to characterise and compare the values of angle changes within the lower limb joints in the sagittal plane and spatial pelvic movements while running in minimalist and neutral footwear. Materials and methods. Research was carried out among a group of 13 participants (6 men and 7 women), highly qualified male and female athletes from the AZS AWF (University of Physical Education) Kraków club. Registration of the run and analysis of the results was performed using spatial motion analysis via the Vicon system with speeds at 3.94±0.45 m/s for men and 3.97±0.32 m/s for women, and 3.91±057 m/s and 4.1±0.36 m/s for men and women, respectively, in the group of highly qualified athletes. Results. At the initial point of foot contact with the ground, the minimalist footwear run was characterised by greater plantar flexion totalling about 5º compared to the run in neutral footwear. There was also a 8º higher value of dorsiflexion during the amortisation phase and a lower value by approx. 5º during the swing phase in this joint when running in minimalist footwear. In the knee joint, a value of about 6º higher flexion was observed during the amortisation phase when running in minimalist footwear. Differences in hip joint angle of approximately 6-8º were found during maximal extension of the joint during the final rebound phase. Spatial pelvic movements were similar during runs in both types of footwear. Conclusions. The obtained results indicate that some of the amortisation and driving force tasks are taken over by the sports footwear. During the run in minimalist footwear, a key role in the field of body amortisation is played by the increased range of knee flexion, while during the rebound phase, the increased range of hip joint extension predominates.

Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 48
Author(s):  
Junya Saeki ◽  
Soichiro Iwanuma ◽  
Suguru Torii

The structure of the first toe is independent of that of the other toes, while the functional difference remains unclear. The purpose of this study was to investigate the difference in the force generation characteristics between the plantar-flexion of the first and second–fifth metatarsophalangeal joints (MTPJs) by comparing the maximal voluntary plantar-flexion torques (MVC torque) at different MTPJs and ankle positions. The MVC torques of the first and second–fifth MTPJs were measured at 0°, 15°, 30°, and 45° dorsiflexed positions of the MTPJs, and at 20° plantar-flexed, neutral, and 20° dorsiflexed positions of the ankle. Two-way repeated measures analyses of variance with Holm’s multiple comparison test (MTPJ position × ankle position) were performed. When the MTPJ was dorsiflexed at 0°, 15°, and 30°, the MVC torque of the first MTPJ when the ankle was dorsiflexed at 20° was higher than that when the ankle was plantar-flexed at 20°. However, the ankle position had no significant effect on the MVC torque of the second–fifth MTPJ. Thus, the MVC torque of the first MTPJ was more affected by the ankle position than the second–fifth MTPJs.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3277
Author(s):  
Juan Luis Florenciano Restoy ◽  
Jordi Solé-Casals ◽  
Xantal Borràs-Boix

The objectives of this study were to determine the amplitude of movement differences and asymmetries between feet during the stance phase and to evaluate the effects of foot orthoses (FOs) on foot kinematics in the stance phase during running. In total, 40 males were recruited (age: 43.0 ± 13.8 years, weight: 72.0 ± 5.5 kg, height: 175.5 ± 7.0 cm). Participants ran on a running treadmill at 2.5 m/s using their own footwear, with and without the FOs. Two inertial sensors fixed on the instep of each of the participant’s footwear were used. Amplitude of movement along each axis, contact time and number of steps were considered in the analysis. The results indicate that the movement in the sagittal plane is symmetric, but that it is not in the frontal and transverse planes. The right foot displayed more degrees of movement amplitude than the left foot although these differences are only significant in the abduction case. When FOs are used, a decrease in amplitude of movement in the three axes is observed, except for the dorsi-plantar flexion in the left foot and both feet combined. The contact time and the total step time show a significant increase when FOs are used, but the number of steps is not altered, suggesting that FOs do not interfere in running technique. The reduction in the amplitude of movement would indicate that FOs could be used as a preventive tool. The FOs do not influence the asymmetry of the amplitude of movement observed between feet, and this risk factor is maintained. IMU devices are useful tools to detect risk factors related to running injuries. With its use, even more personalized FOs could be manufactured.


2014 ◽  
Vol 30 (2) ◽  
pp. 348-352 ◽  
Author(s):  
André G. P. Andrade ◽  
Janaine C. Polese ◽  
Leopoldo A. Paolucci ◽  
Hans-Joachim K. Menzel ◽  
Luci F. Teixeira-Salmela

Lower extremity kinetic data during walking of 12 people with chronic poststroke were reanalyzed, using functional analysis of variance (FANOVA). To perform the FANOVA, the whole curve is represented by a mathematical function, which spans the whole gait cycle and avoids the need to identify isolated points, as required for traditional parametric analyses of variance (ANOVA). The power variables at the ankle, knee, and hip joints, in the sagittal plane, were compared between two conditions: With and without walking sticks at comfortable and fast speeds. For the ankle joint, FANOVA demonstrated increases in plantar flexion power generation during 60–80% of the gait cycle between fast and comfortable speeds with the use of walking sticks. For the knee joint, the use of walking sticks resulted in increases in the knee extension power generation during 10–30% of the gait cycle. During both speeds, the use of walking sticks resulted in increased power generation by the hip extensors and flexors during 10–30% and 40–70% of the gait cycle, respectively. These findings demonstrated the benefits of applying the FANOVA approach to improve the knowledge regarding the effects of walking sticks on gait biomechanics and encourage its use within other clinical contexts.


Robotica ◽  
2013 ◽  
Vol 31 (8) ◽  
pp. 1221-1227 ◽  
Author(s):  
Wenhao Guo ◽  
Tianshu Wang ◽  
Qi Wang

SUMMARYThis paper presents a modified passive dynamic walking model with hip friction. We add Coulomb friction to the hip joint of a two-dimensional straight-legged passive dynamic walker. The walking map is divided into two parts – the swing phase and the impact phase. Coulomb friction and impact make the model's dynamic equations nonlinear and non-smooth, and a numerical algorithm is given to deal with this model. We study the effects of hip friction on gait and obtain basins of attraction of different coefficients of friction.


1999 ◽  
Vol 23 (2) ◽  
pp. 152-162 ◽  
Author(s):  
P. M. Dall ◽  
B. Müller ◽  
I. Stallard ◽  
J. Edwards ◽  
M. H. Granat

Reciprocally linked orthoses used for paraplegic walking have some form of linkage between the two hip joints. It has been assumed that flexion of the swinging leg is driven by extension of the stance leg. The aims of this study were to investigate the moments generated around the hip joint by the two cables in a Louisiana State University Reciprocating Gait Orthosis (LSU-RGO). Six (6) subjects were recruited from the Regional Spinal Injuries Centre at Southport, who were experienced RGO users. The cables were fitted with strain gauged transducers to measure cable tension. Foot switches were used to divide the gait into swing and stance phases. A minimum of 20 steps were analysed for each subject. Moments about the hip joint for each phase of gait were calculated. There were no moments generated by the front cable in 4 of the subjects. In only 2 subjects did the cable generate a moment that could assist hip flexion during the swing phase. These moments were very low and at best could only have made a small contribution to limb flexion. The back cable generated moments that clearly prevented bilateral flexion. It was concluded that the front cable, as used by these experienced RGO users, did not aid flexion of the swinging limb.


Medicina ◽  
2019 ◽  
Vol 55 (9) ◽  
pp. 517 ◽  
Author(s):  
Katarzyna Jochymczyk-Woźniak ◽  
Katarzyna Nowakowska ◽  
Jacek Polechoński ◽  
Sandra Sładczyk ◽  
Robert Michnik

Background and objectives: Virtual reality (VR) is increasingly often finding applications in physiotherapy and health promotion. Recent years have seen the use of advanced technologies in the promotion of physical activity (PA) in society. New simulators, e.g., treadmills, enable the performance of PA (e.g., locomotive movements) in VR (artificially created virtual world). The question of how such movements are similar to natural forms of human locomotion (march, run) inspired the comparative analysis of physiological gait and gait in VR on a multidirectional Omni treadmill. Materials and Methods: The tests involved the use of the BTS Smart system for the triplanar analysis of motion. The test involved 10 healthy females aged 20–24 (weight: 52 ± 3.1 kg, height 162 ± 5.4 cm). Measurements were performed at two stages. The first stage involved the standard assessment of physiological gait, whereas the second was focused on gait forced by the Omni treadmill. The following gait parameters were analyzed: Flexion-extension in the ankle, knee joint and hip joint, rotation in the hip joint and knee joint, foot progression, adduction-abduction in the knee joint and hip joint, pelvic obliquity, pelvic tilt, pelvic rotation as well as energy expenditure and the movement of the body center of mass. Results: The analysis of the test results revealed the existence of differences in the kinematics of physical gait and gait on the treadmill. The greatest differences were recorded in relation to the dorsal-plantar flexion in the ankle, the foot progression, the rotation of the knee joint, pelvic tilt and rotation. In addition, the gait on the treadmill is characterized by the longer duration of the stance phase and reduced ranges of the following movements: Flexion-extension in the ankle, knee joint and hip joint, adduction-abduction in the hip joint as well as rotation in the ankle and hip joint. The values of potential, kinetic and total energy recorded in relation to forced gait are significantly lower than those of physiological gait. Conclusions: Because of the fact that the parameters of gait on the Omni platform vary significantly from the parameters of physical gait, the application of the Omni treadmill in the re-education of gait during rehabilitation should be treated with considerable care. Nonetheless, the treadmill has adequate potential to become a safe simulator enabling active motion in VR using locomotive movements.


2020 ◽  
Vol 25 (6) ◽  
pp. 323-327
Author(s):  
Steven J. Smith ◽  
Cameron J. Powden

Ensuring ankle stability while allowing for functional movement is important when returning patients to physical activity and attempting to prevent injury. The purpose of this study was to examine the effectiveness of the TayCo external and a lace-up ankle brace on lower extremity function, dynamic balance, and motion in 18 physically active participants. Significantly greater range of motion was demonstrated for the TayCo brace compared with the lace-up brace for dorsiflexion and plantar flexion, as well as less range of motion for the TayCo brace compared to the lace-up brace for inversion and eversion. The TayCo brace provided restricted frontal plane motion while allowing increased sagittal plane motion without impacting performance measures.


1999 ◽  
Vol 82 (1) ◽  
pp. 255-259 ◽  
Author(s):  
Frank T.J.M. Zaal ◽  
Kristin Daigle ◽  
Gerald L. Gottlieb ◽  
Esther Thelen

Recently, Gottlieb and colleagues discovered a linear relation between elbow and shoulder dynamic torque in natural pointing movements in the sagittal plane. The present study investigates if the process of learning to reach involves discovering this linearity principle. We inspected torque data from four infants who were learning to reach and grab a toy in front of them. In a longitudinal study, we collected data both in the period before and after they performed their first successful reaches. Torque profiles at the shoulder and elbow were typically multipeaked and became more and more biphasic toward the end of the first year of life. Torques at the shoulder and elbow were correlated tightly for movements in the prereaching period as well as for reaches later in the year. Furthermore, slopes of a regression of shoulder dynamic torque on elbow dynamic torque were remarkably constant at a value ∼2.5–3.0. If linear synergy is used by the nervous system to reduce the controlled degrees of freedom, it will act as a strong constraint on the complex of possible coordination patterns for arm movement early in life. Natural reaching movements can capitalize on this constraint because it simplifies the process of learning to reach.


Sports ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 29 ◽  
Author(s):  
Ioli Panidi ◽  
Gregory C. Bogdanis ◽  
Vasiliki Gaspari ◽  
Polyxeni Spiliopoulou ◽  
Anastasia Donti ◽  
...  

Gastrocnemius medialis (GM) architecture and ankle angle were compared between flexibility trained (n = 10) and not trained (n = 6) female athletes, aged 8–10 years. Ankle angle, fascicle length, pennation angle and muscle thickness were measured at the mid-belly and the distal part of GM, at rest and at the end of one min of static stretching. Flexibility trained (FT) and not trained athletes (FNT) had similar fascicle length at the medial (4.19 ± 0.37 vs. 4.24 ± 0.54 cm, respectively, p = 0.841) and the distal part of GM (4.25 ± 0.35 vs. 4.18 ± 0.65 cm, respectively, p = 0.780), similar pennation angles, and muscle thickness (p > 0.216), and larger ankle angle at rest (120.9 ± 4.2 vs. 110.9 ± 5.8°, respectively, p = 0.001). During stretching, FT displayed greater fascicle elongation compared to FNT at the medial (+1.67 ± 0.37 vs. +1.28 ± 0.22 cm, respectively, p = 0.048) and the distal part (+1.84 ± 0.67 vs. +0.97 ± 0.97 cm, respectively, p = 0.013), larger change in joint angle and muscle tendon junction displacement (MTJ) (p < 0.001). Muscle thickness was similar in both groups (p > 0.053). Ankle dorsiflexion angle significantly correlated with fascicle elongation at the distal part of GM (r = −0.638, p < 0.01) and MTJ displacement (r = −0.610, p < 0.05). Collectively, FT had greater fascicle elongation at the medial and distal part of GM and greater MTJ displacement during stretching than FNT of similar age.


2014 ◽  
Vol 24 (4) ◽  
pp. 320-325 ◽  
Author(s):  
Pilar Sainz de Baranda ◽  
María Rodríguez-Iniesta ◽  
Francisco Ayala ◽  
Fernando Santonja ◽  
Antonio Cejudo

Sign in / Sign up

Export Citation Format

Share Document