The effect of climate change on future Common Security and Defence Policy missions and operations

2021 ◽  
Vol 202 (4) ◽  
pp. 752-762
Author(s):  
Radosław Turczyński

Never before in the known history of the world people had such a great impact on climate change as since the beginning of the era of industrialization. Industrial production on a huge, unprecedented scale, apart from its benefits, causes climate change on a global scale through the emission of greenhouse gases into the atmosphere. According to the AR5 IPCC report, it is expected that the ever-increasing CO2 emissions and the lack of action to reduce it will increase the average global temperature from the pre-industrial era by up to 4 degrees Celsius to 2100. Such significant climate change can have catastrophic and irreversible consequences for the inhabitants of our planet. Exhausting sources of drinking water, land that cannot be cultivated and depleting natural resources will force people to fight for what will remain. The emergence of military groups will result in both internal armed conflicts and international tensions caused by mass migration of people from countries with the least vulnerability to the effects of climate change, to highly developed regions such as EU countries. Climate change in the context of security is multidimensional and affects almost every sector. EU countries will be forced to counteract the effects of climate change not only through agreements or declarations within the UN, but also by involving their own forces and resources in CSDP missions and operations. The current activities under CSDP will be intensified as well as diversified by implementing support for technological adaptation to new climate conditions in undeveloped countries.

2020 ◽  
Author(s):  
Harish Sharma ◽  
Dhirender Kumar ◽  
Ludarmani . ◽  
K.S. Pant

According to WMO (World Meteorological Organization), 2018 was the fourth warmest year on record and average global temperature reached approximately 1°C above pre-industrial level portraying climate change. Changing weather had an impact on lives and sustainable development especially in developing countries. Agriculture is the human enterprise that is most vulnerable to climate change. Large percentage of the population of developing countries depends upon agriculture for their livelihoods. Agroforestry, is an age old management system practiced by farmers to provide shade, a steady supply of food throughout the year, arrest degradation and maintain soil fertility, diversify, increase and stabilize income sources, enhance use efficiency of soil nutrients, water and radiation and provide regular employment thereby increasing system resilience. Agroforestry, thus provides an example of a set of innovative practices designed to enhance productivity in a way that often contributes to climate change mitigation and can also strengthen system’s ability to cope with adverse impacts of changing climate conditions.


2021 ◽  
Author(s):  
Philipp Nußbaum ◽  
Márk Somogyvári ◽  
Christopher Conrad ◽  
Martin Sauter ◽  
Irina Engelhardt

<p>Approximately 10% of the global population rely on groundwater from karst aquifers. Due to complex karst structures, these aquifers have high infiltration capacities and hydraulic conductivities, which makes them vulnerable to pollution and, as prediction and management are complicated, overexploitation. As populations are growing and demand rises, we assess the current level of groundwater stress in karst aquifers with Mediterranean climates and their vulnerability (defined as the change in groundwater stress) to expected changes in temperature and precipitation on the global scale.</p><p>Our approach is based on a Groundwater Stress Index (GSI), which is calculated for 356 karst aquifers (as identified in the World Karst Aquifer Map) that have some of their area located in Mediterranean climate zones (Csa, Csb, and Csc after Köppen/Geiger). GSI are calculated from seven indicators: groundwater recharge, storage, and abstractions, surface runoff, climatic water balance, water-intensity of crops, and groundwater-dependent ecosystems. Each indicator is spatially and temporally averaged to describe a recent trend on aquifer level, resulting in one complex attribute table for the 356 aquifers. GSI is calculated as the average of the normalized indicators for each aquifer, ranging from 0 (no water stress) to 1 (extreme water stress).</p><p>Aquifers are then grouped based on similarities in two classification parameters – degree of karstification (P1) and land cover (P2). Comparison of aquifers with similar classification parameters allows to focus more directly on the relationship between groundwater stress and climate, disregarding relatively constant influences. For each group (e.g., well-developed karst, primarily agriculturally used), we plot calculated GSI values with current temperature and precipitation data. By investigating four Shared Socioeconomic Pathways (SSPs) until 2100, we identify aquifers that mimic future climate conditions for others with similar P1 and P2. We then measure the difference in groundwater stress accompanied by altered climatic factors. This change is interpreted as vulnerability to climate change.</p><p>This approach, which relies on present-day observed conditions, allows us to predict the effect of a changing climate without the need to develop a complex numerical model, which requires large amounts of data and functional understanding of aquifer behavior. While analysis is currently ongoing, we expect both groundwater stress and vulnerabilities to be high. Predicted climate zone shifts by Beck et al. (2018) indicate that, out of 356 karst aquifers with Mediterranean climates, 52 could move to more extreme arid climate zones by 2100.</p><p>Results will be visualized in the form of vulnerability maps that may serve as an “early-warning system”. For particularly threatened aquifers, we will derive recommendations for more sustainable management by suggesting strategies to lower groundwater stress. This is done by taking a closer look at the aquifer’s indicator values and identifying factors that currently contribute the most to groundwater stress.</p>


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Samuel Hoffmann ◽  
Severin D. H. Irl ◽  
Carl Beierkuhnlein

Abstract Protected areas (PA) are refugia of biodiversity. However, anthropogenic climate change induces a redistribution of life on Earth that affects the effectiveness of PAs. When species are forced to migrate from protected to unprotected areas to track suitable climate, they often face degraded habitats in human-dominated landscapes and a higher extinction threat. Here, we assess how climate conditions are expected to shift within the world’s terrestrial PAs (n = 137,432). PAs in the temperate and northern high-latitude biomes are predicted to obtain especially high area proportions of climate conditions that are novel within the PA network at the local, regional and global scale by the end of this century. These PAs are predominantly small, at low elevation, with low environmental heterogeneity, high human pressure, and low biotic uniqueness. Our results guide adaptation measures towards PAs that are strongly affected by climate change, and of low adaption capacity and high conservation value.


2020 ◽  
Author(s):  
Yang Su ◽  
Benoît Gabrielle ◽  
David Makowski

Abstract Conservation agriculture (CA) is being promoted as a set of management practices that can sustain crop production while providing positive environmental externalities. However, its impact on crop productivity is still hotly debated, and how this productivity will be affected by climate change remains uncertain. Here we compared the productivity of CA vs. conventional tillage (CT) systems under current and future climate conditions using a probabilistic machine-learning approach at the global scale. We reveal large differences in the probability of yield gains with CA across crop types, climate zones, and geographical regions. We show that, for most crops, CA performed better in continental, arid and temperate regions than in tropical ones. Under future climate conditions, the relative productive performance of CA is expected to increase for maize in almost all cropping areas within the tropical band, thus improving the competitiveness of CA for this major crop.


Author(s):  
Jun’ya TAKAKURA ◽  
Shinichiro FUJIMORI ◽  
Kiyoshi TAKAHASHI ◽  
Qian ZHOU ◽  
Naota HANASAKI ◽  
...  

Ecosystems ◽  
2021 ◽  
Author(s):  
Laura Marqués ◽  
Drew M. P. Peltier ◽  
J. Julio Camarero ◽  
Miguel A. Zavala ◽  
Jaime Madrigal-González ◽  
...  

AbstractLegacies of past climate conditions and historical management govern forest productivity and tree growth. Understanding how these processes interact and the timescales over which they influence tree growth is critical to assess forest vulnerability to climate change. Yet, few studies address this issue, likely because integrated long-term records of both growth and forest management are uncommon. We applied the stochastic antecedent modelling (SAM) framework to annual tree-ring widths from mixed forests to recover the ecological memory of tree growth. We quantified the effects of antecedent temperature and precipitation up to 4 years preceding the year of ring formation and integrated management effects with records of harvesting intensity from historical forest management archives. The SAM approach uncovered important time periods most influential to growth, typically the warmer and drier months or seasons, but variation among species and sites emerged. Silver fir responded primarily to past climate conditions (25–50 months prior to the year of ring formation), while European beech and Scots pine responded mostly to climate conditions during the year of ring formation and the previous year, although these responses varied among sites. Past management and climate interacted in such a way that harvesting promoted growth in young silver fir under wet and warm conditions and in old European beech under drier and cooler conditions. Our study shows that the ecological memory associated with climate legacies and historical forest management is species-specific and context-dependent, suggesting that both aspects are needed to properly evaluate forest functioning under climate change.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Julián A. Velasco ◽  
Francisco Estrada ◽  
Oscar Calderón-Bustamante ◽  
Didier Swingedouw ◽  
Carolina Ureta ◽  
...  

AbstractImpacts on ecosystems and biodiversity are a prominent area of research in climate change. However, little is known about the effects of abrupt climate change and climate catastrophes on them. The probability of occurrence of such events is largely unknown but the associated risks could be large enough to influence global climate policy. Amphibians are indicators of ecosystems’ health and particularly sensitive to novel climate conditions. Using state-of-the-art climate model simulations, we present a global assessment of the effects of unabated global warming and a collapse of the Atlantic meridional overturning circulation (AMOC) on the distribution of 2509 amphibian species across six biogeographical realms and extinction risk categories. Global warming impacts are severe and strongly enhanced by additional and substantial AMOC weakening, showing tipping point behavior for many amphibian species. Further declines in climatically suitable areas are projected across multiple clades, and biogeographical regions. Species loss in regional assemblages is extensive across regions, with Neotropical, Nearctic and Palearctic regions being most affected. Results underline the need to expand existing knowledge about the consequences of climate catastrophes on human and natural systems to properly assess the risks of unabated warming and the benefits of active mitigation strategies.


Hydrogen ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 90-92
Author(s):  
George E. Marnellos ◽  
Thomas Klassen

The 2018 Intergovernmental Panel on Climate Change (IPCC) report [...]


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 416
Author(s):  
Barbara Jagosz ◽  
Stanisław Rolbiecki ◽  
Roman Rolbiecki ◽  
Ariel Łangowski ◽  
Hicran A. Sadan ◽  
...  

Climate warming increases the water needs of plants. The aim of this study was to estimate the water needs of grapevines in central Poland. Water needs were calculated using the crop coefficients method. Reference evapotranspiration was assessed by the Blaney–Criddle’s equation, modified for climate conditions in Poland. Crop coefficients were assumed according to the Doorenbos and Pruitt method. Water needs were calculated using the data from four meteorological stations. Rainfall deficit with the probability occurrence of normal years, medium dry years, and very dry years was determined by the Ostromęcki’s method. Water needs of grapevines during the average growing season were estimated at 438 mm. Upward time trend in the water needs both in the period of May–October and June–August was estimated. Temporal variability in the water needs was significant for all of the provinces. These changes were mainly impacted by a significant increasing tendency in mean air temperature and less by precipitation totals that did not show a clear changing tendency. Due to climate change, vineyards will require irrigation in the near future. The use of resource-efficient irrigation requires a precise estimate of the grapevines’ water needs. The study identified the water requirements for grapevines in central Poland.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 119
Author(s):  
Antonio Fidel Santos-Hernández ◽  
Alejandro Ismael Monterroso-Rivas ◽  
Diódoro Granados-Sánchez ◽  
Antonio Villanueva-Morales ◽  
Malinali Santacruz-Carrillo

The tropical rainforest is one of the lushest and most important plant communities in Mexico’s tropical regions, yet its potential distribution has not been studied in current and future climate conditions. The aim of this paper was to propose priority areas for conservation based on ecological niche and species distribution modeling of 22 species with the greatest ecological importance at the climax stage. Geographic records were correlated with bioclimatic temperature and precipitation variables using Maxent and Kuenm software for each species. The best Maxent models were chosen based on statistical significance, complexity and predictive power, and current potential distributions were obtained from these models. Future potential distributions were projected with two climate change scenarios: HADGEM2_ES and GFDL_CM3 models and RCP 8.5 W/m2 by 2075–2099. All potential distributions for each scenario were then assembled for further analysis. We found that 14 tropical rainforest species have the potential for distribution in 97.4% of the landscape currently occupied by climax vegetation (0.6% of the country). Both climate change scenarios showed a 3.5% reduction in their potential distribution and possible displacement to higher elevation regions. Areas are proposed for tropical rainforest conservation where suitable bioclimatic conditions are expected to prevail.


Sign in / Sign up

Export Citation Format

Share Document