Calculating groundwater stress and climate change-induced vulnerability of karst aquifers on a global scale

Author(s):  
Philipp Nußbaum ◽  
Márk Somogyvári ◽  
Christopher Conrad ◽  
Martin Sauter ◽  
Irina Engelhardt

<p>Approximately 10% of the global population rely on groundwater from karst aquifers. Due to complex karst structures, these aquifers have high infiltration capacities and hydraulic conductivities, which makes them vulnerable to pollution and, as prediction and management are complicated, overexploitation. As populations are growing and demand rises, we assess the current level of groundwater stress in karst aquifers with Mediterranean climates and their vulnerability (defined as the change in groundwater stress) to expected changes in temperature and precipitation on the global scale.</p><p>Our approach is based on a Groundwater Stress Index (GSI), which is calculated for 356 karst aquifers (as identified in the World Karst Aquifer Map) that have some of their area located in Mediterranean climate zones (Csa, Csb, and Csc after Köppen/Geiger). GSI are calculated from seven indicators: groundwater recharge, storage, and abstractions, surface runoff, climatic water balance, water-intensity of crops, and groundwater-dependent ecosystems. Each indicator is spatially and temporally averaged to describe a recent trend on aquifer level, resulting in one complex attribute table for the 356 aquifers. GSI is calculated as the average of the normalized indicators for each aquifer, ranging from 0 (no water stress) to 1 (extreme water stress).</p><p>Aquifers are then grouped based on similarities in two classification parameters – degree of karstification (P1) and land cover (P2). Comparison of aquifers with similar classification parameters allows to focus more directly on the relationship between groundwater stress and climate, disregarding relatively constant influences. For each group (e.g., well-developed karst, primarily agriculturally used), we plot calculated GSI values with current temperature and precipitation data. By investigating four Shared Socioeconomic Pathways (SSPs) until 2100, we identify aquifers that mimic future climate conditions for others with similar P1 and P2. We then measure the difference in groundwater stress accompanied by altered climatic factors. This change is interpreted as vulnerability to climate change.</p><p>This approach, which relies on present-day observed conditions, allows us to predict the effect of a changing climate without the need to develop a complex numerical model, which requires large amounts of data and functional understanding of aquifer behavior. While analysis is currently ongoing, we expect both groundwater stress and vulnerabilities to be high. Predicted climate zone shifts by Beck et al. (2018) indicate that, out of 356 karst aquifers with Mediterranean climates, 52 could move to more extreme arid climate zones by 2100.</p><p>Results will be visualized in the form of vulnerability maps that may serve as an “early-warning system”. For particularly threatened aquifers, we will derive recommendations for more sustainable management by suggesting strategies to lower groundwater stress. This is done by taking a closer look at the aquifer’s indicator values and identifying factors that currently contribute the most to groundwater stress.</p>

2021 ◽  
Vol 13 (19) ◽  
pp. 10488
Author(s):  
Yiru Jia ◽  
Jifu Liu ◽  
Lanlan Guo ◽  
Zhifei Deng ◽  
Jiaoyang Li ◽  
...  

Slope geohazards, which cause significant social, economic and environmental losses, have been increasing worldwide over the last few decades. Climate change-induced higher temperatures and shifted precipitation patterns enhance the slope geohazard risks. This study traced the spatial transference of slope geohazards in the Qinghai-Tibet Plateau (QTP) and investigated the potential climatic factors. The results show that 93% of slope geohazards occurred in seasonally frozen regions, 2.6% of which were located in permafrost regions, with an average altitude of 3818 m. The slope geohazards are mainly concentrated at 1493–1988 m. Over time, the altitude of the slope geohazards was gradually increased, and the mean altitude tended to spread from 1984 m to 2562 m by 2009, while the slope gradient varied only slightly. The number of slope geohazards increased with time and was most obvious in spring, especially in the areas above an altitude of 3000 m. The increase in temperature and precipitation in spring may be an important reason for this phenomenon, because the results suggest that the rate of air warming and precipitation at geohazard sites increased gradually. Based on the observation of the spatial location, altitude and temperature growth rate of slope geohazards, it is noted that new geohazard clusters (NGCs) appear in the study area, and there is still a possibility of migration under the future climate conditions. Based on future climate forecast data, we estimate that the low-, moderate- and high-sensitivity areas of the QTP will be mainly south of 30° N in 2030, will extend to the south of 33° N in 2060 and will continue to expand to the south of 35° N in 2099; we also estimate that the proportion of high-sensitivity areas will increase from 10.93% in 2030 to 14.17% in 2060 and 17.48% in 2099.


2020 ◽  
Vol 25 (50) ◽  
pp. 133-140
Author(s):  
Gordana Petrović ◽  
Darjan Karabašević ◽  
Svetlana Vukotić ◽  
Vuk Mirčetić ◽  
Adriana Radosavac

The aim of the paper is to show the impact of climate factors on the corn yield in Serbia. Contemporary climate reports show that climate is changing, and the emission of greenhouse gases is one of the main causes of climate change. In three different locations (West Bačka District, Šumadija District and Nišava District) different climatic conditions and corn yield were analyzed for the period from 1991 to 2011. In the research process, the model of multiple linear regression and Pearson coefficient of correlation was applied. Obtained results has shown that there is a high correlation between parameters of climate conditions and variance of corn yield. A small amount of precipitation quantity and high maximum values of temperatures in the vegetation period influenced the decrease in yield, which was particularly noticed during the period from 2000 to 2007. A lower yield of corn was established compared to the average yield in all three observed districts, in the Šumadija district, the yield was lower 48% in 2000 and 52% in 2007, in the West Bačka District, a yield was lower 40% in 2000 and 20% in 2007, and in the Nišava District, the yield was lower 65% in 2000 and 49% in 2007. There are perennial variations of climatic factors, especially temperature and precipitation quantity, which affect the realization of the economic profitability of growing agricultural plant species. Losses in agriculture can be higher in conditions of an unstable climate. It is necessary to more precisely predict climate change and create new hybrids and varieties for cultivation that will be adaptable to changed climate conditions. Adaptations of plants to climatic conditions changes will contribute to greater economy of agricultural production, and the provision of food for the world's population.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 119
Author(s):  
Antonio Fidel Santos-Hernández ◽  
Alejandro Ismael Monterroso-Rivas ◽  
Diódoro Granados-Sánchez ◽  
Antonio Villanueva-Morales ◽  
Malinali Santacruz-Carrillo

The tropical rainforest is one of the lushest and most important plant communities in Mexico’s tropical regions, yet its potential distribution has not been studied in current and future climate conditions. The aim of this paper was to propose priority areas for conservation based on ecological niche and species distribution modeling of 22 species with the greatest ecological importance at the climax stage. Geographic records were correlated with bioclimatic temperature and precipitation variables using Maxent and Kuenm software for each species. The best Maxent models were chosen based on statistical significance, complexity and predictive power, and current potential distributions were obtained from these models. Future potential distributions were projected with two climate change scenarios: HADGEM2_ES and GFDL_CM3 models and RCP 8.5 W/m2 by 2075–2099. All potential distributions for each scenario were then assembled for further analysis. We found that 14 tropical rainforest species have the potential for distribution in 97.4% of the landscape currently occupied by climax vegetation (0.6% of the country). Both climate change scenarios showed a 3.5% reduction in their potential distribution and possible displacement to higher elevation regions. Areas are proposed for tropical rainforest conservation where suitable bioclimatic conditions are expected to prevail.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhe Yuan ◽  
Yongqiang Wang ◽  
Jijun Xu ◽  
Zhiguang Wu

AbstractThe ecosystem of the Source Region of Yangtze River (SRYR) is highly susceptible to climate change. In this study, the spatial–temporal variation of NPP from 2000 to 2014 was analyzed, using outputs of Carnegie–Ames–Stanford Approach model. Then the correlation characteristics of NPP and climatic factors were evaluated. The results indicate that: (1) The average NPP in the SRYR is 100.0 gC/m2 from 2000 to 2014, and it shows an increasing trend from northwest to southeast. The responses of NPP to altitude varied among the regions with the altitude below 3500 m, between 3500 to 4500 m and above 4500 m, which could be attributed to the altitude associated variations of climatic factors and vegetation types; (2) The total NPP of SRYR increased by 0.18 TgC per year in the context of the warmer and wetter climate during 2000–2014. The NPP was significantly and positively correlated with annual temperature and precipitation at interannual time scales. Temperature in February, March, May and September make greater contribution to NPP than that in other months. And precipitation in July played a more crucial role in influencing NPP than that in other months; (3) Climatic factors caused the NPP to increase in most of the SRYR. Impacts of human activities were concentrated mainly in downstream region and is the primary reason for declines in NPP.


Author(s):  
Roshan Kumar Mehta ◽  
Shree Chandra Shah

The increase in the concentration of greenhouse gases (GHGs) in the atmosphere is widely believed to be causing climate change. It affects agriculture, forestry, human health, biodiversity, and snow cover and aquatic life. Changes in climatic factors like temperature, solar radiation and precipitation have potential to influence agrobiodiversity and its production. An average of 0.04°C/ year and 0.82 mm/year rise in annual average maximum temperature and precipitation respectively from 1975 to 2006 has been recorded in Nepal. Frequent droughts, rise in temperature, shortening of the monsoon season with high intensity rainfall, severe floods, landslides and mixed effects on agricultural biodiversity have been experienced in Nepal due to climatic changes. A survey done in the Chitwan District reveals that lowering of the groundwater table decreases production and that farmers are attracted to grow less water consuming crops during water scarce season. The groundwater table in the study area has lowered nearly one meter from that of 15 years ago as experienced by the farmers. Traditional varieties of rice have been replaced in the last 10 years by modern varieties, and by agricultural crops which demand more water for cultivation. The application of groundwater for irrigation has increased the cost of production and caused severe negative impacts on marginal crop production and agro-biodiversity. It is timely that suitable adaptive measures are identified in order to make Nepalese agriculture more resistant to the adverse impacts of climate change, especially those caused by erratic weather patterns such as the ones experienced recently.DOI: http://dx.doi.org/10.3126/hn.v11i1.7206 Hydro Nepal Special Issue: Conference Proceedings 2012 pp.59-63


2020 ◽  
Vol 287 (1929) ◽  
pp. 20200358
Author(s):  
Junfeng Tang ◽  
Ronald R. Swaisgood ◽  
Megan A. Owen ◽  
Xuzhe Zhao ◽  
Wei Wei ◽  
...  

Climate change is one of the most pervasive threats to biodiversity globally, yet the influence of climate relative to other drivers of species depletion and range contraction remain difficult to disentangle. Here, we examine climatic and non-climatic correlates of giant panda ( Ailuropoda melanoleuca ) distribution using a large-scale 30 year dataset to evaluate whether a changing climate has already influenced panda distribution. We document several climatic patterns, including increasing temperatures, and alterations to seasonal temperature and precipitation. We found that while climatic factors were the most influential predictors of panda distribution, their importance diminished over time, while landscape variables have become relatively more influential. We conclude that the panda's distribution has been influenced by changing climate, but conservation intervention to manage habitat is working to increasingly offset these negative consequences.


2020 ◽  
Vol 12 (21) ◽  
pp. 9276
Author(s):  
Ha Kyung Lee ◽  
So Jeong Lee ◽  
Min Kyung Kim ◽  
Sang Don Lee

Information on the phenological shift of plants can be used to detect climate change and predict changes in the ecosystem. In this study, the changes in first flowering dates (FFDs) of the plum tree (Prunus mume), Korean forsythia (Forsythia koreana), Korean rosebay (Rhododendron mucronulatum), cherry tree (Prunus yedoensis), and peach tree (Prunus persica) in Korea during 1920–2019 were investigated. In addition, the changes in the climatic factors (temperature and precipitation) and their relationship with the FFDs were analyzed. The changes in the temperature and precipitation during the January–February–March period and the phenological shifts of all research species during 1920–2019 indicate that warm and dry spring weather advances the FFDs. Moreover, the temperature has a greater impact on this phenological shift than precipitation. Earlier flowering species are more likely to advance their FFDs than later flowering species. Hence, the temporal asynchrony among plant species will become worse with climate change. In addition, the FFDs in 2100 were predicted based on representative concentration pathway (RCP) scenarios. The difference between the predicted FFDs of the RCP 4.5 and RCP 6.0 for 2100 was significant; the effectiveness of greenhouse gas policies will presumably determine the degree of the plant phenological shift in the future. Furthermore, we presented the predicted FFDs for 2100.


2018 ◽  
Vol 14 (4) ◽  
pp. 20170747 ◽  
Author(s):  
H. Jactel ◽  
E. S. Gritti ◽  
L. Drössler ◽  
D. I. Forrester ◽  
W. L. Mason ◽  
...  

While it is widely acknowledged that forest biodiversity contributes to climate change mitigation through improved carbon sequestration, conversely how climate affects tree species diversity–forest productivity relationships is still poorly understood. We combined the results of long-term experiments where forest mixtures and corresponding monocultures were compared on the same site to estimate the yield of mixed-species stands at a global scale, and its response to climatic factors. We found positive mixture effects on productivity using a meta-analysis of 126 case studies established at 60 sites spread across five continents. Overall, the productivity of mixed-species forests was 15% greater than the average of their component monocultures, and not statistically lower than the productivity of the best component monoculture. Productivity gains in mixed-species stands were not affected by tree age or stand species composition but significantly increased with local precipitation. The results should guide better use of tree species combinations in managed forests and suggest that increased drought severity under climate change might reduce the atmospheric carbon sequestration capacity of natural forests.


2020 ◽  
Author(s):  
Wei Yuan ◽  
Shuang-ye Wu ◽  
Shugui Hou

<p>This study aims to establish future vegetation changes in the east and central of northern China (ECNC), an ecologically sensitive region in the transition zonal from humid monsoonal to arid continental climate. The region has experienced significant greening in the past several decades. However, few studies exist on how vegetation will change with future climate change, and great uncertainties exist due to complex, and often spatially non-stationary, relationships between vegetation and climate. In this study, we first used historical NDVI and climate data to model this spatially variable relationship with Geographically Weighted Logit Regression. We found that temperature and precipitation could explain, on average, 43% of NDVI variance, and they could be used to model NDVI fairly well. We then establish future climate change using the output of 11 CMIP6 models for the medium (SSP245) and high (SSP585) emission scenarios for the mid-century (2041-2070) and late-century (2071-2100). The results show that for this region, both temperature and precipitation will increase under both scenarios. By late-century under SSP585, precipitation is projected to increase by 25.12% and temperature is projected to increase 5.87<sup>o</sup>C in ECNC. Finally, we used future climate conditions as input for the regression models to project future vegetation (indicated by NDVI). We found that NDVI will increase under climate change. By mid-century, the average NDVI in ECNC will increase by 0.024 and 0.021 under SSP245 and SSP585. By late-century, it will increase by 0.016 and 0.006 under SSP245 and SSP585 respectively. Although NDVI is projected to increase, the magnitude of increase is likely to diminish with higher emission scenarios, possibly due to the benefit of precipitation increase being gradually encroached by the detrimental effects of temperature increase. Moreover, despite the overall NDVI increase, the area likely to suffer vegetation degradation will also expands, particularly in the western part of ECNC. With higher emissions and later into the century, region with low NDVI is likely to shift and/or expand north-forward. Our results could provide important information on possible vegetation changes, which could help to develop effective management strategies to ensure ecological and economic sustainability in the future.</p>


Sign in / Sign up

Export Citation Format

Share Document