Quality Analysis of Different Specification Grades of Astragalus membranaceus var. mongholicus (Huangqi) from Hunyuan, Shanxi

2019 ◽  
Vol 102 (3) ◽  
pp. 734-740 ◽  
Author(s):  
Minzhen Yin ◽  
Mei Yang ◽  
Shanshan Chu ◽  
Renqing Li ◽  
Yujiao Zhao ◽  
...  

Abstract Background: Huangqi is a famous Chinese medicinal material whose Dao-di producing area is Hunyuan, Shanxi. Huangqi produced in Hunyuan, Shanxi, were divided into several different specifications and grades according to the diameters and different positions of root system. Objective: This article investigates the quantitative characteristics of chemical compositions in different specifications and grades of Astragalus membranaceus var. mongholicus roots, aiming to elucidate the correlation between specifications and/or grades and chemical compositions in Huangqi. Methods: Based on the field investigation, samples of Huangqi collected from Hunyuan, Shanxi, were divided into different specifications and grades. The content of seven flavonoids and five saponins in Astragalus membranaceus var. mongholicus roots of different specifications and grades were determined simultaneously by HPLC–diode–array detection–evaporative light-scattering detection (HPLC–DAD–ELSD). Results: Huangqi was processed by traditional methods, and its commercial specification was classified by different parts of the root system, such as ge-da-tou, hong-lan-qi, zheng-bai-qi, fu-bai-qi, mao-wei-zi, and qi-jian. The total content of seven flavonoids and five saponins in ge-da-tou, qi-jian were lower. The total content of seven flavonoids in hong-lan-qi was much higher, while that of five saponins was much lower. The total content of seven flavonoids in lateral roots or fibrous roots were higher, and that of five saponins was lower, such as zheng-bai-qi, fu-bai-qi, and mao-wei-zi. According to the root diameters, Huangqi was classified to special grade, grade I, grade II, grade III, grade IV, or grade V. Among six grades of Huangqi, the total content of seven flavonoids in grade III, grade IV, and grade V were lower, while the total content of five saponins in them were much higher. Conclusions: There is an obvious difference on the distribution pattern of contents of seven flavonoids and five saponins in Huangqi of different specifications and grades, which provide a certain scientific basis for the quality evaluation of Huangqi. Highlights: The content of seven flavonoids and five saponins in Huangqi were determined by HPLC-DAD-ELSD. The relationship between the commercial specification grades and chemical components of Dao-di herbs Astragalus membranaceus var. mongholicus (Huangqi ) from Hunyuan, Shanxi were revealed, which provided a chemical basis for the classification of commercial specification grades of dao-herbs Astragalus membranaceus var. mongholicus (Huangqi ) from Hunyuan, Shanxi.

2020 ◽  
Vol 36 (1) ◽  
pp. 36-43
Author(s):  
I.O. Konovalova ◽  
T.N. Kudelina ◽  
S.O. Smolyanina ◽  
A.I. Lilienberg ◽  
T.N. Bibikova

A new technique for Arabidopsis thaliana cultivation has been proposed that combines the use of a phytogel-based nutrient medium and a hydrophilic membrane of hydrate cellulose film, separating the root system of the plant from the medium thickness. Growth rates of both main and lateral roots were faster in the plants cultivated on the surface of hydrate cellulose film than in the plants grown in the phytogel volume. The location of the root system on the surface of the transparent hydrate film simplifies its observation and analysis and facilitates plant transplantation with preservation of the root system configuration. The proposed technique allowed us to first assess the effect of exogenous auxin on the growth of lateral roots at the 5-6 developmental stage. methods to study plant root systems, hydrate cellulose film, A. thaliana, lateral roots, differential root growth rate, auxin The work was financially supported by the Russian Foundation for Basic Research (Project Bel_mol_a 19-54-04015) and the basic topic of the Russian Academy of Sciences - IBMP RAS «Regularities of the Influence of Extreme Environmental Factors on the Processes of Cultivation of Higher Plants and the Development of Japanese Quail Tissues at Different Stages of its Ontogenesis under the Conditions of Regenerative Life Support Systems».


2021 ◽  
Vol 13 (7) ◽  
pp. 1317
Author(s):  
Xiaodan Ma ◽  
Peng Yan ◽  
Tianliang Zhao ◽  
Xiaofang Jia ◽  
Jian Jiao ◽  
...  

The chemical composition dataset of Aerosol Reanalysis of NASA’s Modern-Era Retrospective Analysis for Research and Application, version 2 (MERRAero) has not been thoroughly evaluated with observation data in mainland China due to the lack of long-term chemical components data. Using the 5-year data of PM10 mass concentrations and chemical compositions obtained from the routine sampling measurements at the World Meteorological Organization the Global Atmosphere Watch Programme regional background stations, Jing Sha (JS) and Lin’An (LA), in central and eastern China, we comprehensively evaluate the surface PM10 concentrations and chemical compositions such as sulfate (SO42−), organic carbon (OC) and black carbon (BC) derived from MERRAero. Overall, the concentrations of PM10, SO42−, OC and BC from the MERRAero agreed well with the measurements, despite a slight and consistent overestimation of BC concentrations and a moderate and persistent underestimation of PM10 concentrations throughout the study period. The MERRAero reanalysis of aerosol compositions performs better during the summertime than wintertime. By considering the nitrate particles in PM10 reconstruction, MERRAero performance can be significantly improved. The unreasonable seasonal variations of PM10 chemical compositions at station LA by MERRAero could be causative factors for the larger MERRAero discrepancies during 2016–2017 than the period of 2011–2013.


2021 ◽  
Vol 16 (5) ◽  
pp. 1934578X2110167
Author(s):  
Xing-Pan Wu ◽  
Tian-Shun Wang ◽  
Zi-Xin Yuan ◽  
Yan-Fang Yang ◽  
He-Zhen Wu

Objective To explore the anti-COVID-19 active components and mechanism of Compound Houttuynia mixture by using network pharmacology and molecular docking. Methods First, the main chemical components of Compound Houttuynia mixture were obtained by using the TCMSP database and referring to relevant chemical composition literature. The components were screened for OB ≥30% and DL ≥0.18 as the threshold values. Then Swiss Target Prediction database was used to predict the target of the active components and map the targets of COVID-19 obtained through GeneCards database to obtain the gene pool of the potential target of COVID-19 resistance of the active components of Compound Houttuynia mixture. Next, DAVID database was used for GO enrichment and KEGG pathway annotation of targets function. Cytoscape 3.8.0 software was used to construct a “components-targets-pathways” network. Then String database was used to construct a “protein-protein interaction” network. Finally, the core targets, SARS-COV-2 3 Cl, ACE2 and the core active components of Compound Houttuyna Mixture were imported into the Discovery Studio 2016 Client database for molecular docking verification. Results Eighty-two active compounds, including Xylostosidine, Arctiin, ZINC12153652 and ZINC338038, were screened from Compound Houttuyniae mixture. The key targets involved 128 targets, including MAPK1, MAPK3, MAPK8, MAPK14, TP53, TNF, and IL6. The HIF-1 signaling, VEGF signaling, TNF signaling and another 127 signaling pathways associated with COVID-19 were affected ( P < 0.05). From the results of molecular docking, the binding ability between the selected active components and the core targets was strong. Conclusion Through the combination of network pharmacology and molecular docking technology, this study revealed that the therapeutic effect of Compound Houttuynia mixture on COVID-19 was realized through multiple components, multiple targets and multiple pathways, which provided a certain scientific basis of the clinical application of Compound Houttuynia mixture.


2021 ◽  
Author(s):  
Pierre-Mathieu Pélissier ◽  
Hans Motte ◽  
Tom Beeckman

Abstract Lateral roots are important to forage for nutrients due to their ability to increase the uptake area of a root system. Hence, it comes as no surprise that lateral root formation is affected by nutrients or nutrient starvation, and as such contributes to the root system plasticity. Understanding the molecular mechanisms regulating root adaptation dynamics towards nutrient availability is useful to optimize plant nutrient use efficiency. There is at present a profound, though still evolving, knowledge on lateral root pathways. Here, we aimed to review the intersection with nutrient signaling pathways to give an update on the regulation of lateral root development by nutrients, with a particular focus on nitrogen. Remarkably, it is for most nutrients not clear how lateral root formation is controlled. Only for nitrogen, one of the most dominant nutrients in the control of lateral root formation, the crosstalk with multiple key signals determining lateral root development is clearly shown. In this update, we first present a general overview of the current knowledge of how nutrients affect lateral root formation, followed by a deeper discussion on how nitrogen signaling pathways act on different lateral root-mediating mechanisms for which multiple recent studies yield insights.


2014 ◽  
Vol 66 (1) ◽  
pp. 3-15
Author(s):  
Sylwia Ciaglo-Androsiuk

AbstractRelation between morphological traits of the root system and yield related traits is an important issue concerning efforts aiming at improving of ideotype of cultivated plants species, including pea. In this paper, to analyse the dependency between traits describing the root system morphology and yield potential, Person’s andSpearman's_correlations as well as canonical correlations were used.Root system was analyzed in 14 and 21 day-old seedlings growing in blotting-paper cylinders. Yield potential of pea was analysed in a field experiment. Results of Person’s and Spearman's_correlations revealed that number of lateral roots and lateral roots density were correlated witch yield related traits. Correlation between root length and shoot length was observed only for 14 day-old seedlings. The result of canonical correlations revealed that number of lateral roots and lateral roots density had the largest effect on yield related traits. This work highlights, that in order to improve the yield of pea it might become necessary to understand genetic determination of morphological traits of the root system, especially number of lateral roots.


2021 ◽  
Vol 19 (4) ◽  
pp. 452-457
Author(s):  
Zhaohui Xue ◽  
Weichen Song ◽  
Xin Gao ◽  
Wancong Yu ◽  
Xiaonan Hou ◽  
...  

Flos Sophorae Immaturus, dried buds of Sophora japonica, exhibits multiple pharmacologic activities including anti-inflammatory, antiaging, and antiallergy effects as well as adjunct to standard of care cancer therapy. However, active components responsible for beneficial effects in cancer are not known. In this study, Flos Sophorae Immaturus was obtained by ethanol extraction, and eight components were purified, identified, and tested for HepG2 cell proliferation inhibition potency. The compounds identified to be the most effective inhibitors were campherol > isorhamnetin > quercetin. These data provide theoretical and scientific basis for the further development, utilization, and the promotion of added value of Flos Sophorae Immaturus.


Author(s):  
Xinli Liang ◽  
Xinli Wang ◽  
Guowei Zhao ◽  
Xiaoying Huang ◽  
Xiqiang Xu ◽  
...  

: Depression is a mood disorder or affective disorder disease with depression as the main symptom. It has become a kind of mental disease that cannot be ignored in the world that seriously endangers human physical and mental health. Antidepressants commonly used in clinics generally have some defects including slow action, unremarkable effects and large side-effects. Therefore, there has a huge developing space for the research of new and effective therapeutic drugs to supplement or replace traditional drugs. Essential oil has obvious advantages in the treatment of depression and other emotional diseases, its aromatic odor can directly stimulate the olfactory nerves, and the lipophilic small- molecular compounds can cross the blood-brain barrier easily, to play its regulatory role of releasing of neurotransmitters and hormones related to depression, or adjusting the expression of brain-derived neurotrophic factor and proinflammatory cytokines. The pathogenesis of depression and the problems in traditional medication was illustrated, the research on the antidepressant effects and mechanism of essential oils in recent years was summarized and the antidepressant chemical components in plant essential oils were reviewed in this article. It could provide scientific basis for essential oil to be a new choice for relieving depression and treating depression.


Author(s):  
Marek Šírl ◽  
Tereza Šnajdrová ◽  
Dolores Gutiérrez-Alanís ◽  
Joseph G. Dubrovsky ◽  
Jean Phillipe Vielle-Calzada ◽  
...  

The AT-HOOK MOTIF NUCLEAR LOCALIZED PROTEIN (AHL) gene family encodes embryophyte-specific nuclear proteins with DNA binding activity. They modulate gene expression and affect various developmental processes in plants. We identify AHL18 (At3G60870) as a developmental modulator of root system architecture and growth. AHL18 regulates the length of the proliferation domain and number of dividing cells in the root apical meristem and thereby, cell production. Both primary root growth and lateral root development respond according to AHL18 transcription level. The ahl18 knock-out plants show reduced root systems due to a shorter primary root and a lower number of lateral roots. This change results from a higher number of arrested and non-developing lateral root primordia (LRP) rather than from decreased initiation. Overexpression of AHL18 results in a more extensive root system, longer primary roots, and increased density of lateral root initiation events. Formation of lateral roots is affected during the initiation of LRP and later development. AHL18 regulate root apical meristem activity, lateral root initiation and emergence, which is in accord with localization of its expression.


2021 ◽  
Author(s):  
Visarut Buranasudja ◽  
Dolly Rani ◽  
Ashwini Malla ◽  
Khwanlada Kobtrakul ◽  
Sornkanok Vimolmangkang

Abstract Formation of oxidative stress in dermal fibroblasts plays crucial roles in aging processes of skin. The use of phytochemicals that can promote capacity of fibroblasts to combat oxidative stress is an attractive strategy to prevent skin aging and promote skin beauty. Callus culture offers a powerful platform for sustainable, rapid and large-scale production of phytochemicals to serve extensive demands of pharmaceutical and cosmeceutical industries. Here, we demonstrated the application of callus culture of Centella asiatica to produce bioactive metabolites. The 50% ethanolic extract of callus culture has distinctive features of chemical compositions and biological profiles. Results from TLC and HPLC analysis showed that callus extract has unique chemical components, compared with those isolated from authentic plant. Moreover, callus extract possesses promising antioxidant and anti-skin-aging activities. Pre-treatment with callus extract attenuated H2O2-induced-cytotoxicity on human dermal fibroblasts. The results from RT-qPCR clearly suggested that the upregulation of cellular antioxidant enzymes appeared to be major contributor for the protective effects of callus extract against oxidative stress. Moreover, supplementation with callus extract inhibited induction of matrix metalloprotease-9 following H2O2 exposure, suggesting its potential anti-skin-aging activity. Our results demonstrate the potential utility of C. asiatica callus extract as anti-skin-aging agent in cosmeceutical preparations.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
ZiFan Sui ◽  
Weijia Yuan ◽  
Wen Yi ◽  
Weihuan Yang

To explore the effect of grass and shrub plant roots on the stability of soil slopes in rainy areas in the south, this article relies on the Longlang Expressway construction project. Cynodon dactylon and Magnolia multiflora were selected as research subjects. The plant distribution characteristics and mechanical properties are analyzed. This paper uses ABAQUS finite element software to construct a 3D model of the planted slope in the test section. The stress and strain on the root system and the soil were observed, and the variation law of slope stability before and after plant protection under different rainfall events was compared and analyzed. The test and simulation results show that the root content of Cynodon dactylon gradually decreases with increasing depth. Cynodon dactylon was mainly distributed in the 0–30 cm soil body, and its effect on improving the cohesion of the soil body reached 75%. Magnolia multiflora belongs to vertical roots and has a strong and longer main root with relatively developed lateral roots. Its root system passes through the sliding surface of the slope bottom, which reduces the maximum equivalent plastic stress generated inside the slope by 61%. When the total rainfall duration is unchanged, under the three rainfall intensities of small, medium, and large, herbaceous plants increase the safety factor of the soil by 1.33%, 2.08%, and 6.1%, respectively, and the roots of shrubs increase the safety factor of the soil by 3.29%, 4.08%, and 4.32%, respectively. When the rainfall intensity does not change, as the rainfall time increases, the effect of plants on the slope safety factor first gradually increases and eventually stabilizes. The research results provide a reliable theoretical basis for analyzing the effect of plant roots on soil consolidation and slope protection, and they also lay a technical foundation for the promotion and application of ecological slope protection technology.


Sign in / Sign up

Export Citation Format

Share Document