scholarly journals MuTARe: A Multi-Target, Adaptive Reconfigurable Architecture

2020 ◽  
Author(s):  
Marcelo Brandalero ◽  
Luigi Carro ◽  
Antonio Carlos Schneider Beck

With recent changes in transistor scaling trends, the design of all types of processing systems has become increasingly constrained by power consumption. At the same time, driven by the needs of fast response times, many applications are migrating from the cloud to the edge, pushing for the challenge of increasing the performance of these already power-constrained devices. The key to addressing this problem is to design application-specific processors that perfectly match the application's requirements and avoid unnecessary energy consumption. However, such dedicated platforms require significant design time and are thus unable to match the pace of fast-evolving applications that are deployed in the Internet-of-Things (IoT) every day. Motivated by the need for high energy efficiency and high flexibility in hardware platforms, this thesis paves the way to a new class of low-power adaptive processors that can achieve these goals by automatically modifying their structure at run time to match different applications' resource requirements. The proposed Multi-Target Adaptive Reconfigurable Architecture (MuTARe) is based upon a Coarse-Grained Reconfigurable Architecture (CGRA) that can transparently accelerate already-deployed applications, but incorporates novel compute paradigms such as Approximate Computing (AxC) and Near-Threshold Voltage Computing (NTC) to improve its efficiency. Compared to a traditional system of heterogeneous processing cores (similar to ARM's big.LITTLE), the base MuTARe architecture can (without any change to the existing software) improve the execution time by up to $1.3\times$, adapt to the same task deadline with $1.6\times$ smaller energy consumption or adapt to the same low energy budget with $2.3\times$ better performance. When extended for AxC, MuTARe's power savings can be further improved by up to $50\%$ in error-tolerant applications, and when extended for NTC, MuTARe can save further $30\%$ energy in memory-intensive workloads.

2022 ◽  
Vol 27 (2) ◽  
pp. 1-16
Author(s):  
Ming Han ◽  
Ye Wang ◽  
Jian Dong ◽  
Gang Qu

One major challenge in deploying Deep Neural Network (DNN) in resource-constrained applications, such as edge nodes, mobile embedded systems, and IoT devices, is its high energy cost. The emerging approximate computing methodology can effectively reduce the energy consumption during the computing process in DNN. However, a recent study shows that the weight storage and access operations can dominate DNN's energy consumption due to the fact that the huge size of DNN weights must be stored in the high-energy-cost DRAM. In this paper, we propose Double-Shift, a low-power DNN weight storage and access framework, to solve this problem. Enabled by approximate decomposition and quantization, Double-Shift can reduce the data size of the weights effectively. By designing a novel weight storage allocation strategy, Double-Shift can boost the energy efficiency by trading the energy consuming weight storage and access operations for low-energy-cost computations. Our experimental results show that Double-Shift can reduce DNN weights to 3.96%–6.38% of the original size and achieve an energy saving of 86.47%–93.62%, while introducing a DNN classification error within 2%.


2013 ◽  
Vol 312 ◽  
pp. 158-162
Author(s):  
Wen Hai Wu ◽  
Jian Ke ◽  
Huan Long Liu ◽  
Yu Lan Yang ◽  
Hui Zheng

For the high energy consumption and poor emission of a medium-sized hydraulic excavator, energy consumption point is analyzed combined with the advantages of the electric hybrid system. The energy recovery schematic of the system is designed. Mathematical models of the slewing system are established and theoretical simulation is conducted, and it is compared with the traditional structure. The velocity, displacement, and energy consumption curves of the two systems are concluded under the same conditions. The comparison shows that: energy saving of the electric hybrid slewing system is 37.27% compared with the traditional system. And the electric hybrid slewing system has the characteristics of the better control function and the higher energy utilization.


2021 ◽  
Author(s):  
Lin Hua ◽  
Zhicheng Xu ◽  
Yanxiong Liu ◽  
Xinhao Zhao

Abstract Hydraulic fineblanking press is a kind of high-end hydraulic metal forming devices and widely applied in automotive and appliance industry. However, it suffers from the defeat of high energy consumption low energy efficiency. To solve the problem, this study proposed a power-matching strategy by using a novel controllable accumulator which can control the precharge pressure, output flow with high precision. Firstly, the energy characteristics and working performance requirements of the large-sized fineblanking press in a working cycle were investigated. Then, the energy consumption mathematic model coupling with the controllable accumulator was built for designing the key parameters of the accumulators. Based on the load characteristic and the energy model, a controlling strategy of the controllable accumulator was proposed to reduce the imbalance degree of the supplied and demanded power and improve working performance by designing working route of the controllable accumulator. Finally, a detailed hydraulic schematic was designed and applied on the 1000 ton hydraulic fineblanking press, which was validated with simulation model. The results show that compared to the traditional system, the energy efficiency of the novel system is improved by 20.35% with lowering the input energy by 169.4 kJ. Besides, the vibration magnitude of the slide block is decreased a lot and the working production efficiency is improved by 10% compared to the traditional system.


Author(s):  
M.J. Kim ◽  
L.C. Liu ◽  
S.H. Risbud ◽  
R.W. Carpenter

When the size of a semiconductor is reduced by an appropriate materials processing technique to a dimension less than about twice the radius of an exciton in the bulk crystal, the band like structure of the semiconductor gives way to discrete molecular orbital electronic states. Clusters of semiconductors in a size regime lower than 2R {where R is the exciton Bohr radius; e.g. 3 nm for CdS and 7.3 nm for CdTe) are called Quantum Dots (QD) because they confine optically excited electron- hole pairs (excitons) in all three spatial dimensions. Structures based on QD are of great interest because of fast response times and non-linearity in optical switching applications.In this paper we report the first HREM analysis of the size and structure of CdTe and CdS QD formed by precipitation from a modified borosilicate glass matrix. The glass melts were quenched by pouring on brass plates, and then annealed to relieve internal stresses. QD precipitate particles were formed during subsequent "striking" heat treatments above the glass crystallization temperature, which was determined by differential thermal analysis.


The Analyst ◽  
2020 ◽  
Vol 145 (1) ◽  
pp. 122-131 ◽  
Author(s):  
Wanda V. Fernandez ◽  
Rocío T. Tosello ◽  
José L. Fernández

Gas diffusion electrodes based on nanoporous alumina membranes electrocatalyze hydrogen oxidation at high diffusion-limiting current densities with fast response times.


2017 ◽  
Vol 23 (2) ◽  
pp. 218-230 ◽  
Author(s):  
Xiaoying Zhu ◽  
Renbi Bai

Background: Bioactive compounds from various natural sources have been attracting more and more attention, owing to their broad diversity of functionalities and availabilities. However, many of the bioactive compounds often exist at an extremely low concentration in a mixture so that massive harvesting is needed to obtain sufficient amounts for their practical usage. Thus, effective fractionation or separation technologies are essential for the screening and production of the bioactive compound products. The applicatons of conventional processes such as extraction, distillation and lyophilisation, etc. may be tedious, have high energy consumption or cause denature or degradation of the bioactive compounds. Membrane separation processes operate at ambient temperature, without the need for heating and therefore with less energy consumption. The “cold” separation technology also prevents the possible degradation of the bioactive compounds. The separation process is mainly physical and both fractions (permeate and retentate) of the membrane processes may be recovered. Thus, using membrane separation technology is a promising approach to concentrate and separate bioactive compounds. Methods: A comprehensive survey of membrane operations used for the separation of bioactive compounds is conducted. The available and established membrane separation processes are introduced and reviewed. Results: The most frequently used membrane processes are the pressure driven ones, including microfiltration (MF), ultrafiltration (UF) and nanofiltration (NF). They are applied either individually as a single sieve or in combination as an integrated membrane array to meet the different requirements in the separation of bioactive compounds. Other new membrane processes with multiple functions have also been developed and employed for the separation or fractionation of bioactive compounds. The hybrid electrodialysis (ED)-UF membrane process, for example has been used to provide a solution for the separation of biomolecules with similar molecular weights but different surface electrical properties. In contrast, the affinity membrane technology is shown to have the advantages of increasing the separation efficiency at low operational pressures through selectively adsorbing bioactive compounds during the filtration process. Conclusion: Individual membranes or membrane arrays are effectively used to separate bioactive compounds or achieve multiple fractionation of them with different molecule weights or sizes. Pressure driven membrane processes are highly efficient and widely used. Membrane fouling, especially irreversible organic and biological fouling, is the inevitable problem. Multifunctional membranes and affinity membranes provide the possibility of effectively separating bioactive compounds that are similar in sizes but different in other physical and chemical properties. Surface modification methods are of great potential to increase membrane separation efficiency as well as reduce the problem of membrane fouling. Developing membranes and optimizing the operational parameters specifically for the applications of separation of various bioactive compounds should be taken as an important part of ongoing or future membrane research in this field.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 575
Author(s):  
Shangyi Lou ◽  
Jin He ◽  
Hongwen Li ◽  
Qingjie Wang ◽  
Caiyun Lu ◽  
...  

Subsoiling has been acknowledged worldwide to break compacted hardpan, improve soil permeability and water storage capacity, and promote topsoil deepening and root growth. However, there exist certain factors which limit the wide in-field application of subsoiling machines. Of these factors, the main two are poor subsoiling quality and high energy consumption, especially the undesired tillage depth obtained in the field with cover crops. Based on the analysis of global adoption and benefits of subsoiling technology, and application status of subsoiling machines, this article reviewed the research methods, technical characteristics, and developing trends in five key aspects, including subsoiling shovel design, anti-drag technologies, technologies of tillage depth detection and control, and research on soil mechanical interaction. Combined with the research progress and application requirements of subsoiling machines across the globe, current problems and technical difficulties were analyzed and summarized. Aiming to solve these problems, improve subsoiling quality, and reduce energy consumption, this article proposed future directions for the development of subsoiling machines, including optimizing the soil model in computer simulation, strengthening research on the subsoiling mechanism and comprehensive effect, developing new tillage depth monitoring and control systems, and improving wear-resisting properties of subsoiling shovels.


2021 ◽  
Vol 7 (9) ◽  
pp. eabe2209
Author(s):  
S. Lamon ◽  
Y. Wu ◽  
Q. Zhang ◽  
X. Liu ◽  
M. Gu

Nanoscale optical writing using far-field super-resolution methods provides an unprecedented approach for high-capacity data storage. However, current nanoscale optical writing methods typically rely on photoinitiation and photoinhibition with high beam intensity, high energy consumption, and short device life span. We demonstrate a simple and broadly applicable method based on resonance energy transfer from lanthanide-doped upconversion nanoparticles to graphene oxide for nanoscale optical writing. The transfer of high-energy quanta from upconversion nanoparticles induces a localized chemical reduction in graphene oxide flakes for optical writing, with a lateral feature size of ~50 nm (1/20th of the wavelength) under an inhibition intensity of 11.25 MW cm−2. Upconversion resonance energy transfer may enable next-generation optical data storage with high capacity and low energy consumption, while offering a powerful tool for energy-efficient nanofabrication of flexible electronic devices.


Sign in / Sign up

Export Citation Format

Share Document