scholarly journals Importance Measures for NFV Data Center: An Availability Evaluation

Author(s):  
Rafael Souza ◽  
Marcelo Santos ◽  
Stênio Fernandes

Data center infrastructures need to provide high availability of their services. Unexpected spikes of downtime in data centers lead to financial losses. Besides, there are intangible costs such as damaged reputation, low employee satisfaction, and reduced customer retention. In this context, Network Function Virtualization (NFV) emerged as a paradigm that assists data centers in becoming more dynamic and flexible. This paper presents an availability evaluation and importance analysis under the redundancy of NFV in data centers. The NFV data center component importance is represented by using Reliability Block Diagrams (RBD). The proposed models have identified the availability importance and critical devices in an NFV data center. This research also suggests alternatives for device redundancy to reach higher availability and proposes a new importance measure for analyzing the impact of NFV factors on data center availability. The measure can evaluate the degree of the impact of a failure on the data center, therefore, help to identify the factors with a substantial impact on data center availability.

2017 ◽  
Author(s):  
Rafael Souza ◽  
Marcelo Santos ◽  
Stênio Fernandes

A implementação de uma Network Function Virtualization (NFV) denota uma mudança generalizada nos serviços de comunicação e rede de uma rede de provedores de serviços para uma rede baseada em nuvem. Seu uso tem o potencial de fornecer serviços de rede baseados em nuvem com menores custos operacionais e de capital. Neste contexto, este trabalho visa identificar e discutir aplicações de NFV em arquiteturas de data center. Este estudo realiza uma revisão da literatura, para levantar as principais pesquisas sobre alocação de recurso de NFV no data center. A partir dessa pesquisa, foi identificado evidências sobre os problemas e soluções associadas a alocação de recursos de NFV em data centers. Finalmente, identificamos lacunas, desafios abertos que podem ser usadas para direcionar pesquisa futura.


Author(s):  
Christos Bouras ◽  
Anastasia Kollia ◽  
Andreas Papazois

This article describes how novel functionalities will take advantage of the cloud networking and will gradually replace the existing infrastructure of mobile networks with a virtualized one. Two technologies, namely software defined networking (SDN) and network function virtualization (NFV), offer their important benefits and a combination of them is an answer to the demands raised, such as central office re-architected as a data center (CORD). Open network operating system (ONOS) and POX are SDN controllers and offer an option to combine SDN and NFV addressing many ongoing problems in the field of mobile networks. In this paper, technologies and both controllers are compared and contrasted. Indicative cases of topologies are simulated and help evaluating both controllers. According to the experimental findings, ONOS is one of the most important controllers for practical, theoretical, research and educational purposes, while POX is a useful and simpler controller for other educative applications.


Facilities ◽  
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Patrick T.I. Lam ◽  
Daniel Lai ◽  
Chi-Kin Leung ◽  
Wenjing Yang

Purpose As smart cities flourish amidst rapid urbanization and information and communication technology development, the demand for building more and more data centers is rising. This paper aims to examine the principal issues and considerations of data center facilities from the cost and benefit dimensions, with an aim to illustrate the approaches for maximizing the net benefits and remain “green.” Design/methodology/approach A comprehensive literature review informs the costs and benefits of data center facilities, and through a case study of a developer in Hong Kong, the significance of real estate costs is demonstrated. Findings Major corporations, establishments and governments need data centers as a mission critical facility to enable countless electronic transactions to take place any minute of the day. Their functional importance ranges from health, transport, payment, etc., all the way to entertainment activities. Some enterprises own them, whilst others use data center services on a co-location basis, in which case data centers are regarded as an investment asset. Real estate costs affect their success to a great extent, as in the case of a metropolitan where land cost forms a substantial part of the overall development cost for data centers. Research limitations/implications As the financial information of data center projects are highly sensitive due to the competitive status of the industry, a full set of numerical data is not available. Instead, the principles for a typical framework are established. Originality/value Data centers are very energy intensive, and their construction is usually fast tracked costing much to build, not to mention the high-value equipment contents housed therein. Their site locations need careful selection due to stability and security concerns. As an essential business continuity tool, the return on investment is a complex consideration, but certainly the potential loss caused by any disruption would be a huge amount. The life cycle cost and benefit considerations are revealed for this type of mission-critical facilities. Externalities are expounded, with emphasis on sustainable issues. The impact of land shortage for data center development is also demonstrated through the case of Hong Kong.


Author(s):  
Tahir Cader ◽  
Levi Westra ◽  
Andres Marquez

Although semiconductor manufacturers have provided temporary relief with lower-power multi-core microprocessors, OEMs and data center operators continue to push the limits for individual rack power densities. It is not uncommon today for data center operators to deploy multiple 20 kW racks in a facility. Such rack densities are exacerbating the major issues of power and cooling in data centers. Data center operators are now forced to take a hard look at the efficiencies of their data centers. Malone and Belady (2006) have proposed three metrics, i.e., Power Usage Effectiveness (PUE), Data Center Efficiency (DCE), and the Energy-to-Acquisition Cost ratio (EAC), to help data center operators quickly quantify the efficiency of their data centers. In their paper, Malone and Belady present nominal values of PUE across a broad cross-section of data centers. PUE values are presented for data centers at four levels of optimization. One of these optimizations involves the use of Computational Fluid Dynamics (CFD). In the current paper, CFD is used to conduct an in-depth investigation of a liquid-cooled data center that would potentially be housed at the Pacific Northwest National Labs (PNNL). The boundary conditions used in the CFD model are based upon actual measurements on a rack of liquid-cooled servers housed at PNNL. The analysis shows that the liquid-cooled facility could achieve a PUE of 1.57 as compared to a PUE of 3.0 for a typical data center (the lower the PUE, the better, with values below 1.6 approaching ideal). The increase in data center efficiency is also translated into an increase in the amount of IT equipment that can be deployed. At a PUE of 1.57, the analysis shows that 91% more IT equipment can be deployed as compared to the typical data center. The paper will discuss the analysis of the PUE, and will also explore the impact of the raising data center efficiency via the use of multiple cooling technologies and CFD analysis. Complete results of the analyses will be presented in the paper.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Li He ◽  
Qiyan Cao ◽  
Fengjun Shang

This paper concentrates on the component importance measure of a network whose arc failure rates are not deterministic and imprecise ones. Conventionally, a computing method of component importance and a measure method of reliability stability are proposed. Three metrics are analyzed first: Birnbaum measurement, component importance, and component risk growth factor. Based on them, the latter can measure the impact of the component importance on the reliability stability of a system. Examples in some typical structures illustrate how to calculate component importance and reliability stability, including uncertain random series, parallel, parallel-series, series-parallel, and bridge systems. The comprehensive numerical experiments demonstrate that both of these methods can efficiently and accurately evaluate the impact of an arc failure on the reliability of a network system.


Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1173 ◽  
Author(s):  
Basheer Raddwan ◽  
Khalil AL-Wagih ◽  
Ibrahim A. Al-Baltah ◽  
Mohamed A. Alrshah ◽  
Mohammed A. Al-Maqri

Recently, Network Function Virtualization (NFV) and Software Defined Networking (SDN) have attracted many mobile operators. For the flexible deployment of Network Functions (NFs) in an NFV environment, NF decompositions and control/user plane separation have been introduced in the literature. That is to map traditional functions into their corresponding Virtual Network Functions (VNFs). This mapping requires the NFV Resource Allocation (NFV-RA) for multi-path service graphs with a high number of virtual nodes and links, which is a complex NP-hard problem that inherited its complexity from the Virtual Network Embedding (VNE). This paper proposes a new path mapping approach to solving the NFV-RA problem for decomposed Network Service Chains (NSCs). The proposed solution has symmetrically considered optimizing an average embedding cost with an enhancement on average execution time. The proposed approach has been compared to two other existing schemes using 6 and 16 scenarios of short and long simulation runs, respectively. The impact of the number of nodes, links and paths of the service requests on the proposed scheme has been studied by solving more than 122,000 service requests. The proposed Integer Linear Programming (ILP) and heuristic schemes have reduced the execution time up to 39.58% and 6.42% compared to existing ILP and heuristic schemes, respectively. Moreover, the proposed schemes have also reduced the average embedding cost and increased the profit for the service providers.


2019 ◽  
Vol 9 (23) ◽  
pp. 5167
Author(s):  
Vincenzo Eramo ◽  
Francesco G. Lavacca ◽  
Tiziana Catena

Network Function Virtualization is based on the virtualization of the network functions and it is a new technology allowing for a more flexible allocation of cloud and bandwidth resources. In order to employ the flexibility of the technology and to adapt its use according to the traffic variation, reconfigurations of the cloud and bandwidth resources are needed by means of both migration of the Virtual Machines executing the network functions and reconfiguration of circuits interconnecting the Virtual Machines. The objective of the paper is to study the impact of the maximum number of switch reconfigurations on the cost saving that the Networking Function Virtualization technology allows us to achieve. The problem is studied in the case of a scenario with an elastic optical network interconnecting datacenters in which the Virtual Machines are executed. The problem can be formulated as an Integer Linear Programming one introducing a constraint on the maximum number of switch reconfigurations but due to its computational complexity we propose a low computational complexity heuristic allowing for results close to the optimization ones. The results show how the limitation on the number of possible reconfigurations has to be taken into account to evaluate the effectiveness in terms of cost saving that the Virtual Machine migrations in Network Function Virtualization environment allows us to achieve.


Author(s):  
Russell Muren ◽  
Van P. Carey

Use of solar powered absorption refrigeration to augment data center afternoon cooling has three advantages: (1) it replaces non-renewable electrically powered cooling with cooling provided by renewable power, (2) it reduces operating costs by reducing consumption of costly peak load electrical power, and (3) use of a carbon free energy source reduces the carbon footprint of the data center. In the investigation summarized here, a computational model of a lithium bromide (LiBr) and water absorption system performance was used to explore the advantages of using nighttime cooling and cold storage to enhance the performance of solar powered absorption refrigeration for peak cooling in data centers. In this study, the model accounts for thermodynamic property effects on the absorption cycle performance and finite heat exchanger effectiveness. The model is used to explore the impact of parametric changes on system coefficient of performance (COP) and system payback. The results indicate that COP enhancements above 15% can be achieved with simple cold storage strategies. The results indicate that that when optimally designed, this type of system achieves energy efficiency, offering environmental and economic advantages that make it an attractive initial step in incorporating solar powered absorption cooling into green data center designs. Strategies for maximizing the positive contributions of cold storage suggested by the results are discussed.


2011 ◽  
Vol 58-60 ◽  
pp. 529-534 ◽  
Author(s):  
Xin Qi ◽  
De C. Zuo ◽  
Zhan Zhang ◽  
Xiao Zong Yang

Importance measures are widely used to characterize the contribution of components to the system performance such as reliability, availability, risk, etc, and thus give great help in identifying system weaknesses and prioritizing system improvement activities. Although much work has been carried out on component importance analysis, most studies only concern the consistent states of components within which components exhibit consistent performance until state changes happen. Unfortunately, field data shows that many transient faults in components may result in severe consequences without causing any state changes, and, this can lead to a misunderstanding of component importance. This paper focuses on the reliability importance analysis in presence of transient faults, and proposes a composite measure for evaluation. A sample series parallel system is analyzed to illustrate the use of this measure.


Author(s):  
Tianyi Gao ◽  
Bahgat G. Sammakia ◽  
James Geer ◽  
Bruce Murray ◽  
Russell Tipton ◽  
...  

The heat dissipated by electronic equipment inside data centers is increasing at a rapid rate due to the increasing of performance requirement and package density. This ever increasing power leads to critical challenges of thermal management for these high power density data centers. Energy consumption is also a key issue for high density data centers. Roughly 1.5% of all U.S. electricity consumption in the year 2006 was related to data centers, while that number increased to 2% by the year 2010. In 2013, U.S. data centers consumed approximately 91 billion kilowatt-hours of electricity. This amount of the electricity equals the annual output of 34 500-megawatt coal-fired power plants [1]. Cooling systems constitute a significant portion of the energy consumption of data centers, being approximately 25%∼35% of the total energy usage. Therefore, there is a large potential to save energy by optimizing current existing cooling systems and investigating new cooling technologies, and, at the same time, improving the overall cooling capacity and efficiency. This paper describes and investigates a hybrid cooling technology which utilizes in row coolers in existing raised floor air cooled data centers. The in row cooler functions as a liquid-to-air heat exchanger. In addition to the traditional raised floor cold aisle-hot aisle arrangements, the in row cooler is installed between the IT equipment to enable delivering the liquid coolant medium closer to the IT equipment. The in row coolers intake the hot air from the hot aisle, condition it, and supply the chilled air to the cold aisle. Thus, by extracting a large portion of the heat more directly into the cooling liquid through the in row coolers compared with the perimeter CRAH unit, the overall cooling performance and efficiency can potentially be improved. CFD models for an in row cooler and a representative data center room are developed. Experimentally characterized performance data are used to calibrate and validate the models. The models are then used to conduct a detailed computational analysis to assess the effectiveness of different arrangement configurations of in row cooler units in two rows of racks along one cold aisle. The detailed performance of the entire cold aisle is characterized using the rack inlet air temperature and a temperature nonuniformity factor. The impact of CRAH location and room layout are also investigated. This study is based on a practical problem and the corresponding results and analysis provide basic installation and design guidelines for future equipment upgrading in certain parts of the data center.


Sign in / Sign up

Export Citation Format

Share Document