scholarly journals Investigation of Factors Affecting Friction Stir Welding of Polyethylene by ANOVA Analysis

2021 ◽  
Author(s):  
Mustafa Kemal BİLİCİ ◽  
Ahmet İrfan YUKLER ◽  
Memduh KURTULMUS ◽  
İlyas KARTAL

The variables that are effective in joining high density polyethylene sheets by friction stir welding (FSW) have been investigated. In order to understand the effects of welding parameters, using Taguchi optimization, tool rotation speed, feed rate, shoulder diameter and pin diameter values were selected in a wide range. The results obtained with Taguchi optimization method were evaluated according to the highest / the best signal-noise ratio. Macro photographs taken cross-sectional view taken the weld seam, SEM images and hardness measurements were used to evaluate. As a result of the evaluation, the accuracy of the optimization was found to be approximately 96 %. As a result, feed rate and shoulder diameter were determined as the most effective parameter affecting the welding quality and welding performance. These two parameters (shoulder diameter and feed rate) have found to effect of approximately 65 % on tensile strength, weld quality and hardness. Finally, it has obtained that the most effective welding parameter was the shoulder diameter with 40.81 %.

2020 ◽  
Vol 863 ◽  
pp. 85-95
Author(s):  
Truong Minh Nhat ◽  
Truong Quoc Thanh ◽  
Tu Vinh Thong ◽  
Tran Trong Quyet ◽  
Luu Phuong Minh

This study presents conducted heat simulations and experimental jointing flat-plate of aluminum alloy 6061 and SUS 304. Temperature is simulated by the COMSOL software in three states: (1) Preheat the Friction Stir Welding (FSW) by TIG welding, (2) Thermal contact resistance between Aluminium and steel, and (3) The welding process using stiring friction is simulated. The simulations intended to predicting the temperature which is used for preheat and welding process to ensuring the required solid-state welding. The temperature is also determined and checked by a thermal imager comparing with simulation results. Besides, the results of tensile strength is carried out. The Box - Behnken method is used to identify the relationship between the welding parameters (rotation, speed and offset), temperature and tensile strength. The maximum tensile strength is 77% compared to the strength of aluminum alloy. The optimal set of parameters for the process is n = 676 rpm, v = 46 mm / min and x = 0.6 mm. The optimizing welding parameters to achieving good quality of welding process are described. SEM images to determine some properties of welding materials. This is also the basis for initial research to identify some defects in welding of two different materials (IMC thickness and interconnected pores) and the cause of these defects.


Author(s):  
Sanjeev Verma ◽  
Vinod Kumar

Aluminium and its alloys are lightweight, corrosion-resistant, affordable and high-strength material and find wide applications in shipbuilding, automotive, constructions, aerospace and other industrial sectors. In applications like aerospace, marine and automotive industries, there is a need to join components made of different aluminium alloys, viz. AA6061 and AA5083. In this study friction stir welding (FSW) is used to join dissimilar plates made of AA6061-T6 and AA5083-O. The effect of varying tool pin profile, tool rotation speed, tool feed rate and tilt angle of the tool has been investigated on the tensile strength and percentage elongation of the welded joints. Box-Behkan design, with four input parameters and three levels of each parameter has been employed to decide the set of experimental runs. The regression models have been developed to investigate the influence of welding variables on the tensile strength and elongation of the welded joint. It is revealed that with the increase in welding parameters like tool rpm, tool feed rate and tilt angle of the tool, both the mechanical properties increase, reach a maximum level, followed by a decrease with further increase in the value of parameters. Amongst different types of tool pin profiles used, the FSW tool having straight cylindrical (SC) pin profile is found to yield the maximum strength and elongation of the welded joint for different combinations of welding parameters. Multiple response optimization indicates that the maximum UTS (135.83 MPa) and TE (4.35%) are obtained for the welded joint fabricated using FSW tool having SC pin profile, tilted at 1.11° and operating at tool speed and feed rate of 1568 rpm and 39.53 mm/min., respectively.


Author(s):  
M. Sucharitha ◽  
B. Ravisankar

Friction stir welding could be a solid-state welding has a wide range of applications in industries like aerospace and automobile industries. In this work, the friction stir weld ability of aluminium metal matrix composite(AMMC) using H13 tool and sensitivity of parameters like tool rotation speed, traverse speed and axial force are assessed on final durability, hardness and microstructure. It was observed that the tensile strength and hardness are increased by increasing the tool rotation speed. The microstructure showed fine Al-Mg-Si eutectic particles in a matrix of Al solid solution.


2011 ◽  
Vol 299-300 ◽  
pp. 1146-1150
Author(s):  
Esther Titilayo Akinlabi ◽  
Stephen Akinlabi

This paper reports the effect of shoulder diameter on the resulting interfacial regions of joints between aluminium and copper produced by the friction stir welding process. The welds were produced using three shoulder diameter tools, viz; 15, 18 and 25 mm. This paper focuses on welds produced at a constant rotational speed of 600 rpm and feed rate of 50 mm/min varying the shoulder diameters. Analysis of the force feedback revealed that the advancing force, the downward vertical force and the torque increases as the shoulder diameter increases. Microstructural characterization was conducted on the joint interfaces and it was observed that the widths of the interfacial regions comprising of the Stir Zone and the Thermo – Mechanically Affected Zone (TMAZ) increases as the shoulder size increases.


Author(s):  
Boddu Rajnaveen ◽  
Govada Rambabu ◽  
Kollabothina Prakash ◽  
Kotipalli Srinivasa Rao

Abstract AA2219-T87 aluminium alloy has been used in aerospace applications because of its high strength, low density and resistance to corrosion. The copper in the alloy improves the hardness and lowers melting point, which makes two sections easily joined with a process called friction stir welding of aluminium alloy. In the present work, heat-treated AA2219 alloy was butt welded by solid-state friction stir welding process. This work aims to develop a suitable combination of welding parameters for producing defect-free weld joints of AA2219 alloy to improve tensile and corrosion properties. The most influencing control parameter for optimising the friction stir welding responses was determined using sophisticated design of experiments (DOE) techniques. Ultimate tensile strength and corrosion resistance are observed as responses in this study. To achieve the desired weld responses, a three-factor, three-level Box-behneken design was used. Analysis of Variance (ANOVA) was carried out to examine the interaction effect and significant welding parameter to set the optimal level of welding conditions. Multi-response regression equations have been developed using response surface methodology (RSM) to estimate the output characteristics of weld. The Genetic algorithm (GA) was used to optimise the predicted mathematical model under given optimization constraints. The results shown that the optimum responses are obtained at input factors rotational speed 300 rpm, welding speed 80 mm/min, and axial force of 10kN.


2021 ◽  
pp. 009524432110588
Author(s):  
Mustafa Kemal Bilici

Modern thermoplastic materials are used in an expanding range of engineering applications, such as in the automotive industry, due to their enhanced stress-to-weight ratios, toughness, a very short time of solidification, and a low thermal conductivity. Recently, friction stir welding has started to be used in joining processes in these areas. There are many factors that affect weld performance and weld quality in friction stir welding (FSW). These factors must be compatible with each other. Due to the large number of welding variables in friction stir welding processes, it is very difficult to achieve high strength FSW joints, high welding performance, and control the welding process. Welding variables that form the basis of friction stir welding; machine parameters, tool variables, and material properties are divided into three main groups. Each welding variable has different effects on the weld joint. In this study, friction stir welds were made on high density polyethylene (HDPE) sheets with factors selected from machine parameters and welding tool variables. Although the welding performance, quality, and strength gave good results in some conditions, successful joints could not be realized in some conditions. In particular, welding defects occurring in the combination of HDPE material with FSW were investigated. Welding quality, defects, and performances were examined with macrostructure. In addition, the tensile strength values of some the joints were determined. The main purpose of this study is to determine the welding defects that occur at the joints. The causes of welding defects, prevention methods, and which weld variables caused were investigated. Welding parameters and welding defects caused by welding tools were examined in detail. In addition, the factors causing welding defects were changed in a wide range and the changes in the defects were observed.


Author(s):  
P. Edwards ◽  
M. Ramulu

An experimental study was conducted to identify acceptable welding parameters for friction stir welding Ti-6Al-4V butt joints, ranging from 3 mm to 12 mm in thickness. The primary parameters of interest were the spindle speed and feed rate. Welds were produced using spindle speeds of 140–320 rpm and feed rates between 40 mm/min and 125 mm/min. Joints were evaluated by macro- and micrometallurgical examination along with limited fatigue and tensile testing. The weld parameters were found to influence the microstructure, penetration, void formation, and tool wear among other things. A process window was identified for combinations of the feed rate and spindle speed capable of achieving defect free joints for a given tooling configuration and thickness. It was found that the tensile and fatigue properties of the welds produced in this study were comparable to Ti–6Al–4V base material properties.


Author(s):  
Arshad Noor Siddiquee ◽  
Sunil Pandey ◽  
Mustufa Haider Abidi ◽  
Abdulrahman Al-Ahmari ◽  
Noor Zaman Khan ◽  
...  

Welding AISI 304 stainless steel is challenging, especially as fusion-based welding processes (such as arc welding) severely undermine the material's corrosion resistance due to sensitization. Solid-state friction stir welding is one of the most suitable alternatives. Friction stir welding of high-strength high-softening materials such as AISI 304 is difficult mainly because of the non-availability of affordable tools and tool life. In this study, AISI 304 stainless steel was successfully butt-welded by friction stir welding. The experiments were performed using Taguchi's L27 orthogonal array. Shoulder diameter, tool r/min, and traverse speed were selected as the most influential welding parameters. A Tungsten Carbide (WC) tool was employed with a tapered pin profile. Defect-free joints were fabricated successfully for all the welding conditions. Microstructural examinations using optical microscopy and scanning electron microscopy revealed significant grain refinement in the stir zone and the presence of distinct structural features such as stepped, dual, and ditch in various characteristics zones. The presence of precipitates was also observed in samples and was confirmed via energy-dispersive X-ray spectroscopy analysis. The in-process traverse force was measured by a special arrangement of force measuring units attached to the work fixture. The traverse force data were analyzed and optimized. The results of an analysis of variance reveal that the traverse speed was the most important parameter, followed by tool r/min, interaction between the tool shoulder diameter and traverse speed, interaction between the tool shoulder diameter and tool r/min, and, finally, the tool r/min.


2010 ◽  
Vol 638-642 ◽  
pp. 1261-1266 ◽  
Author(s):  
Christian A. Widener ◽  
Dwight A. Burford ◽  
Sarah Jurak

Friction stir welding (FSW) is a complex thermo-mechanical process which produces wrought microstructure with microstructural gradients in grain size, grain orientation, dislocation density, and precipitate distribution. The type and degree of microstructural modification is a function of the particular alloy chosen, its initial temper, the tool design and corresponding weld process parameter window, and other variables like material thickness, size, fixturing, etc. Since the microstructural changes produced can dramatically affect resultant mechanical performance and corrosion response, a thorough understanding of the variables involved in those changes is needed. A design of experiments approach was used to study the effects of welding parameter selection on the microstructural changes wrought by FSW with two different sizes of the same FSW tool design. A combination of microhardness mapping and electrical conductivity testing was used to investigate potential differences. The importance of these factors and the means for characterizing them for developing standards and specifications are also discussed.


2013 ◽  
Vol 52 ◽  
pp. 587-592 ◽  
Author(s):  
Mohammad Hasan Shojaeefard ◽  
Abolfazl Khalkhali ◽  
Mostafa Akbari ◽  
Mojtaba Tahani

Sign in / Sign up

Export Citation Format

Share Document