scholarly journals Challenges for Cost-Effective Microalgae Anaerobic Digestion

Author(s):  
lvaro Torres ◽  
Fernando G. ◽  
Brbara Rincn ◽  
Jan Bartacek ◽  
Rafael Borja ◽  
...  
2021 ◽  
pp. 125055
Author(s):  
R. Yukesh Kannah ◽  
S. Kavitha ◽  
Obulisamy Parthiba Karthikeyan ◽  
Eldon R. Rene ◽  
Gopalakrishnan Kumar ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2353
Author(s):  
Nour El Houda Chaher ◽  
Abdallah Nassour ◽  
Moktar Hamdi ◽  
Michael Nelles

This study proposed the selection of cost-effective additives generated from different activity sectors to enhance and stabilize the start-up, as well as the transitional phases, of semi-continuous food waste (FW) anaerobic digestion. The results showed that combining agricultural waste mixtures including wheat straw (WS) and cattle manure (CM) boosted the process performance and generated up to 95% higher methane yield compared to the control reactors (mono-digested FW) under an organic loading rate (OLR) range of 2 to 3 kg VS/m3·d. Whereas R3 amended with unmarketable biochar (UBc), to around 10% of the initial fresh mass inserted, showed a significant process enhancement during the transitional phase, and more particularly at an OLR of 4 kg VS/m3·d, it was revealed that under these experimental conditions, FW reactors including UBc showed an increase of 144% in terms of specific biogas yield (SBY) compared to FW reactors fed with agricultural residue. Hence, both agricultural and industrial waste were efficacious when it came to boosting either FW anaerobic performance or AD effluent quality. Although each co-substrate performed under specific experimental conditions, this feature provides decision makers with diverse alternatives to implement a sustainable organic waste management system, conveying sufficient technical details to draw up appropriate designs for the recovery of various types of organic residue.


Increasing demand for energy and high waste generation in Nigeria necessitates the adoption of technologies that promote renewable energy and wastes conversion into viable commodity. The biogas technology is one of such systems that have been found to be cost effective and environmentally friendly. In this paper the performance study of a biogas pilot plant using domestic wastes from Benin metropolis was done. Two different samples of substrates composition were made to undergo anaerobic digestion at two different mesophillic temperatures and pH ranges. The gas produced was analyzed for percentage composition. It was observed that good mesophilic temperature range leads to faster digestion and that pH of slurry depend on substrates composition, period of production and temperature.


2016 ◽  
Vol 20 (suppl. 5) ◽  
pp. 1573-1584
Author(s):  
Biljana Milutinovic ◽  
Gordana Stefanovic ◽  
Ksenija Dencic-Mihajlov ◽  
Petar Djekic ◽  
Aleksandra Boricic

A cost-effectiveness of a specific waste treatment technique is very important factor when making the decision to invest in a waste treatment facility. Waste treatment can bring economic benefit through the value of product: recycled materials, the compost, the generated electricity, or heat. However, the expected economic benefits depend on many factors: the investment costs and operating costs of the waste treatment facility, revenues, the market price of the product obtained by waste treatment etc. The investment and operating costs and the revenue also depend on the amount of treated waste. This paper presents a mathematical model for evaluation of cost-effectiveness in the waste treatment technique with energy recovery depending on the amount of waste, i. e. evaluation the minimum amount of waste to be treated for a cost-effective waste treatment technique with energy recovery. To develop the mathematical model, a socio-economic analysis was used. The model is applied to calculate the lower limit of cost-effectiveness in the waste treatment techniques with energy recovery: incineration and anaerobic digestion, in the city of Nis, Serbia, as a case study. The obtained results show that the amount of waste currently generated in the city of Nis is not sufficient for the cost-effective incineration treatment, but with the currently available amount of waste, anaerobic digestion is the waste treatment that can be operated without losses in the city of Nis.


2017 ◽  
Vol 245 ◽  
pp. 549-559 ◽  
Author(s):  
Regina J. Patinvoh ◽  
Osagie A. Osadolor ◽  
Ilona Sárvári Horváth ◽  
Mohammad J. Taherzadeh

2020 ◽  
Vol 10 (21) ◽  
pp. 7947
Author(s):  
Peter W. Harris ◽  
Bernadette K. McCabe

This work represents and reviews a compilation of investigations into improving anaerobic digestion performance of high-strength wastewater in the Australian Red Meat Processing industry. The industry produces significant quantities of organic-rich wastewater which requires treatment prior to release to the environment. Anaerobic lagoons are a cost-effective method of waste treatment where land availability is not an issue; however, the high fat load in the wastewater can negatively impact the anaerobic lagoon system and result in compromised anaerobic digestion performance. This paper will discuss the importance of upstream primary pre-treatment and review a series of investigations focused on optimising digester performance and improving fat biodegradability. These studies include: 1. the effect of temperature and mixing; 2. the influence of feedstock trace element composition and supplementation, and; 3. the potential benefit from pre-treatments such as chemical, thermobaric, thermochemical and bio-surfactant. This paper discusses the implications of these findings for covered anaerobic lagoon operation and provides recommendations to promote optimum digester performance and future opportunities in adopting alternate anaerobic digestion technology options. Finally, the paper provides recent trends toward the use of other waste streams for co-digestion and discusses this in terms of digester optimization and technology options.


2019 ◽  
Vol 360 ◽  
pp. 861-865 ◽  
Author(s):  
Binghan Xie ◽  
Weijia Gong ◽  
Xiaobin Tang ◽  
Langming Bai ◽  
Yuanqing Guo ◽  
...  

1970 ◽  
Vol 46 (3) ◽  
pp. 339-342
Author(s):  
SMA Sujan ◽  
MS Bashar ◽  
M Rahaman ◽  
MN Haque ◽  
MY Miah ◽  
...  

Biogas, produced from organic waste through anaerobic digestion (AD), is mainly composed of methane (CH4) and carbon dioxide (CO2) with smaller amount of hydrogen sulfide (H2S) and nitrogen (N2). Trace amount of some other gases are occasionally present in biogas. For electricity generation from biogas, reduction of H2S is necessary because it is toxic and corrosive to most of the equipments. Reduction of Hydrogen Sulfide (H2S) from poultry based biogas (normally it contents 1500~2500 ppm) can be done by dosing air/oxygen to the main digester during the digestion process. Two methods of air injection technique have been followed for optimization of the process. Firstly two hour interval air injection and secondly air injection based on percentage of hourly gas production. The optimum air percentage to minimize H2S should be at least 3.00%. After aeration H2S level comes to the desired level (<50ppm) within 1.5-2.0 hours and remains constant up to 7-9 hours and biogas can be used for effective power generation. A complete aeration system has been developed which is simple and cost effective for H2S reduction to the desired level from poultry based biogas plant. This system can be applied for any size of poultry based biogas plant for effective power generation. Key words: Anaerobic digestion; Hydrogen Sulfide (H2S); Aeration; Biogas digester; Power generation DOI: http://dx.doi.org/10.3329/bjsir.v46i3.9040 BJSIR 2011; 46(3): 339-342


Author(s):  
O.O Agbede ◽  
O.A Aworanti ◽  
F.N Osuolale ◽  
A.O Adebayo ◽  
O.O Ogunleye ◽  
...  

Huge quantity of Municipal Solid Waste (MSW) is generated daily. This waste comprises a biodegradable portion which can be converted into biogas (bioenergy) by anaerobic digestion (AD). This study reviews MSW and its management, AD feedstock and their characteristics, factors affecting biogas production in a biodigester and anaerobic co-digestion of Organic Fraction of MSW (OFMSW) with other substrates. Municipal solid waste is managed through waste diversion (reduction, reuse, recycling and recovery) and waste disposal (controlled incineration, landfilling and controlled dumping). AD feedstock includes agricultural waste/residues, animal wastes, energy crops, food waste, forestry crops and residues, organic industrial waste and wastewater, weeds, aquatic algae, sewage and OFMSW. The essential factors that influence the production of biogas are temperature, pH, mixing rate, carbon/nitrogen ratio, organic loading rate, micro and macro-nutrient availability, retention time, nature of the feedstock and digester type. Anaerobic co-digestion of OFMSW with other substrates results in improved AD process stability, enhanced biogas productivity, maximization of the capacity of available feedstock for anaerobic digestion. It is also a cost-effective and improved technique to optimize anaerobic digestion process via the increase in nutrients and bacterial variety in substrates. The generation rate and composition of MSW, as well as the characteristics of OFMSW feedstock for anaerobic digestion, are required for the design of a full-scale biodigester for municipal use. The information provided in this review is invaluable to researchers, governments, industries and other stakeholders interested in anaerobic conversion of biodegradable solids to bioenergy.


Sign in / Sign up

Export Citation Format

Share Document