scholarly journals NASA Global Satellite and Model Data Products and Services for Tropical Cyclone Research

Author(s):  
Zhong Liu ◽  
David Meyer ◽  
Chung-Lin Shie ◽  
Angela Li

The lack of observations over vast tropical oceans is a major challenge for tropical cyclone research. Satellite observations and model reanalysis data play an important role in filling these gaps. Established in the mid-1980s, the Goddard Earth Sciences Data and Information Services Center (GES DISC), as one of the 12 NASA data centers, archives and distributes data from several Earth science disciplines such as precipitation, atmospheric dynamics, atmospheric composition, and hydrology, including well-known NASA satellite missions (e.g., TRMM, GPM) and model assimilation projects (MERRA-2). Acquiring datasets suitable for tropical cyclone research in a large data archive is a challenge for many, especially for those who are not familiar with satellite or model data. Over the years, the GES DISC has developed user-friendly data services. For example, Giovanni is an online visualization and analysis tool, allowing users to visualize and analyze over 2000 satellite- and model-based variables with a Web browser, without downloading data and software. In this chapter, we will describe data and services at the GES DISC with emphasis on tropical cyclone research. We will also present two case studies and discuss future plans.


2006 ◽  
Vol 39 (2) ◽  
pp. 262-266 ◽  
Author(s):  
R. J. Davies

Synchrotron sources offer high-brilliance X-ray beams which are ideal for spatially and time-resolved studies. Large amounts of wide- and small-angle X-ray scattering data can now be generated rapidly, for example, during routine scanning experiments. Consequently, the analysis of the large data sets produced has become a complex and pressing issue. Even relatively simple analyses become difficult when a single data set can contain many thousands of individual diffraction patterns. This article reports on a new software application for the automated analysis of scattering intensity profiles. It is capable of batch-processing thousands of individual data files without user intervention. Diffraction data can be fitted using a combination of background functions and non-linear peak functions. To compliment the batch-wise operation mode, the software includes several specialist algorithms to ensure that the results obtained are reliable. These include peak-tracking, artefact removal, function elimination and spread-estimate fitting. Furthermore, as well as non-linear fitting, the software can calculate integrated intensities and selected orientation parameters.



2020 ◽  
Author(s):  
Leah P. Macfadyen

Curriculum analysis is a core component of curriculum renewal. Traditional approaches to curriculum analysis are manual, slow and subjective, but some studies have suggested that text analysis might usefully be employed for exploration of curriculum. This concise paper outlines a pilot use case of content analytics to support curriculum review and analysis. I have co-opted Quantext – a relatively user-friendly text analysis tool designed to help educators explore student writing – for analysis of the text content of the 17 courses in our online master’s program. Quantext computed descriptive metrics and readability indices for each course and identified top keywords and ngrams per course. Compilation and comparison of these revealed frequent curricular topics and networks of thematic relationships between courses, in ways that both individual educators and curriculum committees can interpret and use for decision-making. Future Quantext features will allow even more sophisticated identification of curricular gaps and redundancies.



2021 ◽  
Author(s):  
Jiyao Wang ◽  
Philippe Youkharibache ◽  
Aron Marchler-Bauer ◽  
Christopher Lanczycki ◽  
Dachuan Zhang ◽  
...  

AbstractiCn3D was originally released as a web-based 3D viewer, which allows users to create a custom view in a life-long, shortened URL to share with colleagues. Recently, iCn3D was converted to use JavaScript classes and could be used as a library to write Node.js scripts. Any interactive features in iCn3D can be converted to Node.js scripts to run in batch mode for a large data set. Currently the following Node.js script examples are available at https://github.com/ncbi/icn3d/tree/master/icn3dnode: ligand-protein interaction, protein-protein interaction, change of interactions due to residue mutations, DelPhi electrostatic potential, and solvent accessible surface area. iCn3D PNG images can also be exported in batch mode using a Python script. Other recent features of iCn3D include the alignment of multiple chains from different structures, realignment, dynamic symmetry calculation for any subsets, 2D cartoons at different levels, and interactive contact maps. iCn3D can also be used in Jupyter Notebook as described at https://pypi.org/project/icn3dpy.



2014 ◽  
Vol 27 (24) ◽  
pp. 9197-9213 ◽  
Author(s):  
Michael Horn ◽  
Kevin Walsh ◽  
Ming Zhao ◽  
Suzana J. Camargo ◽  
Enrico Scoccimarro ◽  
...  

Abstract Future tropical cyclone activity is a topic of great scientific and societal interest. In the absence of a climate theory of tropical cyclogenesis, general circulation models are the primary tool available for investigating the issue. However, the identification of tropical cyclones in model data at moderate resolution is complex, and numerous schemes have been developed for their detection. The influence of different tracking schemes on detected tropical cyclone activity and responses in the Hurricane Working Group experiments is examined herein. These are idealized atmospheric general circulation model experiments aimed at determining and distinguishing the effects of increased sea surface temperature and other increased CO2 effects on tropical cyclone activity. Two tracking schemes are applied to these data and the tracks provided by each modeling group are analyzed. The results herein indicate moderate agreement between the different tracking methods, with some models and experiments showing better agreement across schemes than others. When comparing responses between experiments, it is found that much of the disagreement between schemes is due to differences in duration, wind speed, and formation-latitude thresholds. After homogenization in these thresholds, agreement between different tracking methods is improved. However, much disagreement remains, accountable for by more fundamental differences between the tracking schemes. The results indicate that sensitivity testing and selection of objective thresholds are the key factors in obtaining meaningful, reproducible results when tracking tropical cyclones in climate model data at these resolutions, but that more fundamental differences between tracking methods can also have a significant impact on the responses in activity detected.



Author(s):  
Buo-Fu Chen ◽  
Christopher A. Davis ◽  
Ying-Hwa Kuo

AbstractIdealized numerical studies have suggested that in addition to vertical wind shear (VWS) magnitude, the VWS profile also affects tropical cyclone (TC) development. A way to further understand the VWS profile’s effect is to examine the interaction between a TC and various shear-relative low-level mean flow (LMF) orientations. This study mainly uses the ERA5 reanalysis to verify that, consistent with idealized simulations, boundary-layer processes associated with different shear-relative LMF orientations affect real-world TC’s intensity and size. Based on analyses of 720 TCs from multiple basins during 2004–2016, a TC affected by an LMF directed toward downshear-left in the Northern Hemisphere favors intensification, whereas an LMF directed toward upshear-right is favorable for expansion. Furthermore, physical processes associated with shear-relative LMF orientation may also partly explain the relationship between the VWS direction and TC development, as there is a correlation between the two variables.The analysis of reanalysis data provides other new insights. The relationship between shear-relative LMF and intensification is not significantly modified by other factors [inner-core sea surface temperature (SST), VWS magnitude, and relative humidity (RH)]. However, the relationship regarding expansion is partly attributed to environmental SST and RH variations for various LMF orientations. Moreover, SST is critical to the basin-dependent variability of the relationship between the shear-relative LMF and intensification. For Atlantic TCs, the relationship between LMF orientation and intensification is inconsistent with all-basin statistics unless the analysis is restricted to a representative subset of samples associated with generally favorable conditions.





2013 ◽  
Vol 141 (2) ◽  
pp. 451-467 ◽  
Author(s):  
Ryuji Yoshida ◽  
Hirohiko Ishikawa

Abstract The flow environment associated with tropical cyclone genesis (TCG) over the western North Pacific was assessed via categorization into five flow patterns: monsoon shear line (SL), monsoon confluence region (CR), monsoon gyre (GY), easterly wave (EW), and preexisting tropical cyclone (PTC). Using reanalysis data and an objective algorithm, the authors defined “contribution scores” for the five flow patterns. Each score represents the contribution to TCG from each flow pattern, and scores were calculated for 908 TCG cases from 1979 to 2008 (30 yr). Of the major contribution flow patterns, SL accounted for 42% of TCGs, EW for 18%, CR for 16%, PTC for 11%, and GY for 6%. Seasonal variations in the occurrence frequency of these five patterns were clear, but interannual variations were not as apparent. Tropical cyclones often appear to be generated in conditions with multiple flow patterns. Thus, relationships between multiple flow patterns were investigated by comparing contribution scores. The SL and CR patterns were strongly correlated to each other, which can be explained by the monsoon southwesterly that organizes both patterns. The EW pattern tends to be independent of the other flow patterns. The PTC pattern has a relatively high correlation with CR, but does not have a correlation with SL or EW. Thus, the characteristics of flow patterns for the occurrence frequency of TCG are derived for a longer period than in previous studies, and correlations among flow patterns are also investigated.



2020 ◽  
Author(s):  
Kieran Bhatia ◽  
Alex Baker ◽  
Gabriel Vecchi ◽  
Hiroyuki Murakami ◽  
James Kossin ◽  
...  

<p>Tropical cyclone (TC) rapid intensification events are responsible for intensity forecasts with the highest errors, and hurricanes that rapidly intensify cause a disproportionate amount of the fatalities and damage from TCs. According to a recent study by Bhatia et al. (2019), natural variability cannot account for the recent (1982-2009), observed increase in the highest TC intensification rates in the Atlantic Basin. These results agree well with the main conclusions of Bhatia et al. (2018), which demonstrated climate change could significantly increase TC intensification rates worldwide by the end of 21<sup>st</sup> century.</p><p>Expanding on the work of Bhatia et al. (2018, 2019), TC intensification trends are analyzed for the period 1982-2017 using two observational datasets, the International Best-Track Archive for Climate Stewardship (IBTrACS) and the Advanced Dvorak Technique-HurricaneSatellite-B1 (ADT-HURSAT). The extended observational datasets confirm significant upward trends in intensifications metrics. To explore a physical explanation for the climate change response of TC intensification, we use ERA5 reanalysis data to calculate trends in the favorability of storm environments. When evaluating environmental data, we use 6-hour increments at specific annuli around already-formed storms in order to focus on synoptic conditions unique to storm evolution and not genesis. The robust trends in a 36-year times series and corresponding evolution of storm environments corroborates a climate change fingerprint on TC intensification.</p>



2016 ◽  
Vol 73 (2) ◽  
pp. 869-890 ◽  
Author(s):  
Matthew J. Onderlinde ◽  
David S. Nolan

Abstract Tropical cyclone–relative environmental helicity (TCREH) is a measure of how the wind vector changes direction with height, and it has been shown to modulate the rate at which tropical cyclones (TCs) develop both in idealized simulations and in reanalysis data. The channels through which this modulation occurs remain less clear. This study aims to identify the mechanisms that lead to the observed variations in intensification rate. Results suggest that the difference in intensification rate between TCs embedded in positive versus negative TCREH primarily results from the position of convection and associated latent heat fluxes relative to the wind shear vector. When TCREH is positive, convection is more readily advected upshear and air parcels that experience larger fluxes are more frequently ingested into the TC core. Trajectories computed from high-resolution simulations demonstrate the recovery of equivalent potential temperature downwind of convection, latent heat flux near the TC core, and parcel routes through updrafts in convection. Differences in trajectory characteristics between TCs embedded in positive versus negative TCREH are presented. Contoured frequency-by-altitude diagrams (CFADs) show that convection is distributed differently around TCs embedded in environments characterized by positive versus negative TCREH. They also show that the nature of the most intense convection differs only slightly between cases of positive and negative TCREH. The results of this study emphasize the fact that significant variability in TC-intensification rate results from vertical variations in the environmental wind direction, even when the 850–200-hPa wind shear vector remains unchanged.



Sign in / Sign up

Export Citation Format

Share Document