scholarly journals Novel Biosensing Strategies for the in Vivo Detection of microRNA

2020 ◽  
Author(s):  
Junling Zhang ◽  
Shanshan Zhao ◽  
Jikui Wu

As a regulatory molecule of post-transcriptional gene expression, microRNA (miRNA) is a class of endogenous, non-coding small molecule RNAs. MiRNA detection is essential for biochemical research and clinical diagnostics but challenging due to its low abundance, small size, and sequence similarities. In this chapter, traditional methods of detecting miRNA like polymerase chain reaction (PCR), DNA microarray, and northern blotting are introduced briefly. These approaches are usually used to detect miRNA in vitro. Some novel strategies for sensing miRNAs in vivo, including hybridization probe assays, strand-displacement reaction (SDR), entropy-driven DNA catalysis (EDC), catalytic hairpin assembly (CHA), hybridization chain reaction (HCR), DNAzyme-mediated assays, and CRISPR-mediated assays, are elaborated in detail. This chapter describes the principles and designs of these detection technologies and discusses their advantages as well as their shortcomings, providing guidelines for the further development of more sensitive and selective miRNA sensing strategies in vivo.

2020 ◽  
Vol 48 (10) ◽  
pp. e60-e60 ◽  
Author(s):  
Jie Wei ◽  
Huimin Wang ◽  
Xue Gong ◽  
Qing Wang ◽  
Hong Wang ◽  
...  

Abstract The construction of robust, modular and compact DNA machinery facilitates us to build more intelligent and ingenious sensing strategies in complex biological systems. However, the performance of conventional DNA amplifiers is always impeded by their limited in-depth amplifications and miscellaneously enzymatic requirements. Here, a proteinase-free reciprocal DNA replication machinery is developed by exploiting the synergistic cross-activation between hybridization chain reaction (HCR) and DNAzyme. The DNAzyme provides an efficient way to simplify the sophisticated design of HCR machinery and simultaneously to promote the amplification capacity. And the HCR-assembled tandem DNAzyme nanowires produce numerous new triggers for reversely stimulating HCR amplifier as systematically explored by experiments and computer-aided simulations. The reciprocal amplifier can be executed as a versatile and powerful sensing platform for analyzing miRNA in living cells and even in mice, originating from the inherent reaction accelerations and multiple-guaranteed recognitions. The reciprocal catalytic DNA machine holds great potential in clinical diagnosis and assessment.


2020 ◽  
Vol 21 (10) ◽  
pp. 955-964 ◽  
Author(s):  
Mengjie Liu ◽  
John Wade ◽  
Mohammed Akhter Hossain

: Ghrelin is a 28-amino acid octanoylated peptide hormone that is implicated in many physiological and pathophysiological processes. Specific visualization of ghrelin and its cognate receptor using traceable ligands is crucial in elucidating the localization, functions, and expression pattern of the peptide’s signaling pathway. Here 12 representative radio- and fluorescently-labeled peptide-based ligands are reviewed for in vitro and in vivo imaging studies. In particular, the focus is on their structural features, pharmacological properties, and applications in further biochemical research.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Feng Li ◽  
Wenting Yu ◽  
Jiaojiao Zhang ◽  
Yuhang Dong ◽  
Xiaohui Ding ◽  
...  

AbstractDNA nanostructures have been demonstrated as promising carriers for gene delivery. In the carrier design, spatiotemporally programmable assembly of DNA under nanoconfinement is important but has proven highly challenging due to the complexity–scalability–error of DNA. Herein, a DNA nanotechnology-based strategy via the cascade hybridization chain reaction (HCR) of DNA hairpins in polymeric nanoframework has been developed to achieve spatiotemporally programmable assembly of DNA under nanoconfinement for precise siRNA delivery. The nanoframework is prepared via precipitation polymerization with Acrydite-DNA as cross-linker. The potential energy stored in the loops of DNA hairpins can overcome the steric effect in the nanoframework, which can help initiate cascade HCR of DNA hairpins and achieve efficient siRNA loading. The designer tethering sequence between DNA and RNA guarantees a triphosadenine triggered siRNA release specifically in cellular cytoplasm. Nanoframework provides stability and ease of functionalization, which helps address the complexity–scalability–error of DNA. It is exemplified that the phenylboronate installation on nanoframework enhanced cellular uptake and smoothed the lysosomal escape. Cellular results show that the siRNA loaded nanoframework down-regulated the levels of relevant mRNA and protein. In vivo experiments show significant therapeutic efficacy of using siPLK1 loaded nanoframework to suppress tumor growth.


2010 ◽  
Author(s):  
L. Sironi ◽  
S. Freddi ◽  
L. D'Alfonso ◽  
M. Collini ◽  
T. Gorletta ◽  
...  

2021 ◽  
Vol 30 (03) ◽  
pp. 222-229
Author(s):  
Matthias Hackl ◽  
Elisabeth Semmelrock ◽  
Johannes Grillari

AbstractMicroRNAs (miRNAs) are short (18–24 nucleotides) non-coding RNA sequences that regulate gene expression via binding of messenger RNA. It is estimated that miRNAs co-regulate the expression of more than 70% of all human genes, many of which fulfil important roles in bone metabolism and muscle function. In-vitro and in-vivo experiments have shown that the targeted loss of miRNAs in distinct bone cell types (osteoblasts and osteoclasts) results in altered bone mass and bone architecture. These results emphasize the biological relevance of miRNAs for bone health.MiRNAs are not only considered as novel bone biomarkers because of their biological importance to bone metabolism, but also on the basis of other favorable properties: 1) Secretion of miRNAs from cells enables “minimally invasive” detection in biological fluids such as serum. 2) High stability of miRNAs in serum enables the retrospective analysis of frozen blood specimens. 3) Quantification of miRNAs in the serum is based on the RT-PCR - a robust method that is considered as the gold standard for the analysis of nucleic acids in clinical diagnostics.With regard to osteoporosis, it has been shown that many of the known risk factors are characterized by distinct miRNA profiles in the affected tissues: i) age-related loss of bone mass, ii) sarcopenia, iii) changes in estrogen metabolism and related changes Loss of bone mass, and iv) diabetes. Therefore, numerous studies in recent years have dealt with the characterization of miRNAs in the serum of osteoporosis patients and healthy controls, and were able to identify recurring miRNA patterns that are characteristic of osteoporosis. These novel biomarkers have great potential for the diagnosis and prognosis of osteoporosis and its clinical outcomes.The aim of this article is to give a summary of the current state of knowledge on the research and application of miRNA biomarkers in osteoporosis.


2017 ◽  
Vol 89 (20) ◽  
pp. 11021-11026 ◽  
Author(s):  
Xinyue Song ◽  
Jiayu Zhang ◽  
Zihong Yue ◽  
Zonghua Wang ◽  
Zhihong Liu ◽  
...  

1996 ◽  
Vol 5 (3) ◽  
pp. 210-217
Author(s):  
M. M. Verheggen ◽  
H. I. M. de Bont ◽  
P. W. C. Adriaansen-Soeting ◽  
B. J. A. Goense ◽  
C. J. A. M. Tak ◽  
...  

In this study, we investigated the expression of lipocortin I and II (annexin I and I in the human bronchial epithelium, bothin vivoandin vitro. A clear expression of lipocortin I and II protein was found in the epithelium in sections of bronchial tissue. In cultured human bronchial epithelial cells we demonstrated the expression of lipocortin I and II mRNA and protein using Northern blotting, FACScan analysis and ELISA. No induction of lipocortin I or II mRNA or protein was observed after incubation with dexamethasone. Stimulation of bronchial epithelial cells with IL-1β, TNF-α or LPS for 24 h did not affect the lipocortin I or II mRNA or protein expression, although PGE2and 6-keto-PGF1αproduction was significantly increased. This IL-1β- and LPS-mediated increase in eicosanoids could be reduced by dexamethasone, but was not accompanied by an increase in lipocortin I or II expression. In human bronchial epithelial cells this particular glucocorticoid action is not mediated through lipocortin I or II induction.


2021 ◽  
Author(s):  
Yipu Wang ◽  
Dong Mei ◽  
Xinyi Zhang ◽  
Da-Hui Qu ◽  
Ju Mei ◽  
...  

With increase of social aging, Alzheimer's disease (AD) has been one of the serious diseases threatening human health. The occurrence of A<i>β </i>fibrils<i> </i>or plaques is recognized as the hallmark of AD.<i> </i>Currently, optical imaging has stood out to be a promising technique for the imaging of A<i>β</i> fibrils/plaques and the diagnosis of AD. However, restricted by their poor blood-brain barrier (BBB) penetrability, short-wavelength excitation and emission, and aggregation-caused quenching (ACQ) effect, the clinically used gold-standard optical probes such as <a>thioflavin</a> T (ThT) and thioflavin S (ThS), are not effective enough in the early diagnosis of AD <i>in vivo</i>. Herein, we put forward an “all-in-one” design principle and demonstrate its feasibility in developing high-performance fluorescent probes which are specific to A<i>β</i> fibrils/plaques and promising for super-early <i>in</i>-<i>vivo</i> diagnosis of AD. As a proof of concept, a simple rod-like amphiphilic NIR fluorescent AIEgen, i.e., AIE-CNPy-AD, is developed by taking the specificity, BBB penetration ability, deep-tissue penetration capacity, high signal-to-noise ratio (SNR) into consideration. AIE-CNPy-AD is constituted by connecting the electron-donating and accepting moieties through single bonds and tagging with a propanesulfonate tail, giving rise to the NIR fluorescence, aggregation-induced emission (AIE) effect, amphiphilicity, and rod-like structure, which in turn result in high binding-affinity and excellent specificity to A<i>β</i> fibrils/plaques, satisfactory ability to penetrate BBB and deep tissues, ultrahigh SNR and sensitivity, and high-fidelity imaging capability. <i>In-vitro, ex-vivo,</i> and <i>in-vivo</i> <a>identifying of A<i>β</i> fibrils/plaques</a> in different strains of mice indicate that AIE-CNPy-AD holds the universality to the detection of A<i>β</i> fibrils/plaques. It is noteworthy that AIE-CNPy-AD is even able to trace the small and sparsely distributed A<i>β</i> fibrils/plaques in very young AD model mice such as 4-month-old APP/PS1 mice which are reported to be the youngest mice to have A<i>β</i> deposits in brains, suggesting its great potential in diagnosis and intervention of AD at a super-early stage.


1989 ◽  
Vol 2 (1) ◽  
pp. 65-70 ◽  
Author(s):  
H.J. Stewart ◽  
S.H.E. McCann ◽  
A.J. Northrop ◽  
G.E. Lamming ◽  
A.P.F. Flint

ABSTRACT A cloned cDNA has been isolated by probing a sheep blastocyst cDNA library using a synthetic oligonucleotide representing the N-terminal amino acid sequence of the antiluteolytic protein, ovine trophoblast protein-1. Sequence analysis of the cDNA confirms the 70% homology between the antiluteolysin and the interferon-α family of proteins; however, the sequence reported here differs at several points from previously reported amino acid and cDNA sequences for the antiluteolysin. In-vitro translation of day-16 poly(A)+ RNA indicated that antiluteolysin mRNA is a major constituent of total mRNA at this stage of blastocyst development, and Northern blotting confirmed that antiluteolysin mRNA production occurred between days 13 and 22 after oestrus. This is consistent with the stage at which embryonic extracts are antiluteolytic on administration in vivo. These and other data confirm that the ovine trophoblast antiluteolysin is an interferon, and suggest that at least five isoforms of this protein may exist.


Sign in / Sign up

Export Citation Format

Share Document