scholarly journals Tribological Properties of Ionic Liquids

2020 ◽  
Author(s):  
Sumit Kumar Panja

Our main focus is to report the tribological properties of ionic liquids (ILs). Mainly, lubricating of ILs has been reported to understand the applicability of ionic liquids (ILs) in petroleum-based lubricant industry and energy conversion process as oil additive. The influence of counter parts of ILs on tribological property has been reported for designing efficient lubricating and oil-additive property of ILs. The effect of halogenated and nonhalogenated ILs on corrosion is also reported during tribological studies at different metal surface. Further, role of ILs as oil-additive has been discussed in terms of better tribological performance. Structure modification and role of anion on better performance of tribological property have been mentioned for enhancing effectiveness of lubricant and oil-additive properties. Origin of corrosion and thin film formation on metal surface are also discussed in detailed using different types of ILs and metal surfaces.

RSC Advances ◽  
2016 ◽  
Vol 6 (97) ◽  
pp. 94905-94910 ◽  
Author(s):  
Narathon Khemasiri ◽  
Chanunthorn Chananonnawathorn ◽  
Annop Klamchuen ◽  
Sukittaya Jessadaluk ◽  
Apirak Pankiew ◽  
...  

Herein, we demonstrate a powerful technique, known as reactive gas-timing (RGT) rf magnetron sputtering, to fabricate high quality Zn3N2 thin films at room temperature without applying any additional energy sources.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Haizhong Wang ◽  
Zenghong Song ◽  
Dan Qiao ◽  
Dapeng Feng ◽  
Jinjun Lu

The tribological performance of Si3N4ball sliding against Ti3SiC2disc lubricated by lithium-based ionic liquids (ILs) was investigated using an Optimol SRV-IV oscillating reciprocating friction and wear tester at room temperature (RT) and elevated temperature (100°C). Glycerol and the conventional imidazolium-based IL 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (L-F106) were used as references under the same experimental conditions. The results show that the lithium-based ILs had higher thermal stabilities than glycerol and lower costs associated with IL preparation than L-F106. The tribotest results show that the lithium-based ILs were effective in reducing the friction and wear of Si3N4/Ti3SiC2contacts. [Li(urea)]TFSI even produced better tribological properties than glycerol and L-F106 both at RT and 100°C. The SEM/EDS and XPS results reveal that the excellent tribological endurance of Si3N4/Ti3SiC2contacts lubricated by lithium-based ILs was mainly attributed to the formation of surface protective films composed of various tribochemical products.


1997 ◽  
Vol 386 (1-3) ◽  
pp. 231-240 ◽  
Author(s):  
Yasunori Taga ◽  
Riichi Takahasi

RSC Advances ◽  
2017 ◽  
Vol 7 (68) ◽  
pp. 42718-42724 ◽  
Author(s):  
Zhantao Wang ◽  
Fuxi Shi ◽  
Cunlu Zhao

The role of relative humidity (RH) on the wetting behavior of droplets of two [Rmim][NTf2] ionic liquids (ILs) on a mica surface was investigated and water vapor adsorption was found to enhance the ILs precursor film formation and droplet spreading.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2965
Author(s):  
Sandeep Agrawal ◽  
Nishant K. Singh ◽  
Rajeev Kumar Upadhyay ◽  
Gurminder Singh ◽  
Yashvir Singh ◽  
...  

In recent years, the engineering implications of carbon nanotubes (CNTs) have progressed enormously due to their versatile characteristics. In particular, the role of CNTs in improving the tribological performances of various engineering materials is well documented in the literature. In this work, an investigation has been conducted to study the tribological behaviour of CNTs filled with glass-reinforced polymer (GFRP) composites in dry sliding, oil-lubricated, and gaseous (argon) environments in comparison to unfilled GFRP composites. The tribological study has been conducted on hardened steel surfaces at different loading conditions. Further, the worn surfaces have been examined for a particular rate of wear. Field-emission scanning electron (FESEM) microscopy was used to observe wear behaviours. The results of this study explicitly demonstrate that adding CNTs to GFRP composites increases wear resistance while lowering friction coefficient in all sliding environments. This has also been due to the beneficial strengthening and self-lubrication properties caused by CNTs on GFRP composites, according to FESEM research.


Sign in / Sign up

Export Citation Format

Share Document