scholarly journals The Nanocellulose Fibers from Symbiotic Culture of Bacteria and Yeast (SCOBY) Kombucha: Preparation and Characterization

2021 ◽  
Author(s):  
Pingkan Aditiawati ◽  
Rudi Dungani ◽  
Salsabila Muharam ◽  
Aminudin Sulaeman ◽  
Sri Hartati ◽  
...  

Symbiotic Culture of Bacteria and Yeast (SCOBY) is a by-product in the form of cellulose polymers produced by bacteria in the kombucha fermentation process. Until now, SCOBY products still have application limitations. Several world designers have succeeded in making works using fabrics based on SCOBY. The resulting fabric has a flexible texture and is brown like synthetic leather. Fabrics based on SCOBY are also considered cheap and more environmentally friendly with short production time. The use of SCOBY as a fabric base material still has problems, where the fabric produced from SCOBY kombucha, directly through the drying process, has the characteristic of being very easy to absorb water. Another problem is that SCOBY production in the kombucha fermentation process is difficult to achieve a uniform thickness and SCOBY production in a large surface area is also difficult to stabilize. The development of SCOBY into cellulose fibers can be done by first changing the structure of SCOBY into nanocellulose. This nanocellulose production can then be developed into nanocellulose fibers in the form of threads and then spun to become a complete fabric. The production of nanocellulose is carried out using cellulase enzymes. It is known that cellulase enzymes can be obtained through the growth of bacteria or specific fungi. One of the groups of fungi and bacteria commonly used to produce cellulase enzymes are Trichoderma and Bacillus.

2020 ◽  
Vol 32 (1) ◽  
Author(s):  
S. Mohammad Sajadi ◽  
Mohammad Pirouei ◽  
Nabaz A. Salih ◽  
Kamal Kolo ◽  
Samir M. Hamad

Abstract Background Due to the large surface area of green-synthesized TiO2@CuO@Chromite nanocatalysts (NCs) and accumulations of bioactive phytochemicals on its surface, it was used for an efficient and safe synthesis of nitriles and also an environmentally friendly process of water treatment. For the first time, a rapid, economic, one-pot, solventless and safe protocol is presented for ecosynthesis of TiO2@CuO@Chromite nanocatalysts (NCs) to efficient, ligand-free and solventless synthesis of aromatic nitriles through the cyanation of aldehydes at room temperature. Furthermore, the eco-NCs were used as a potent adsorbent for physical and biological treatment of sewage waters collected around the natural and residential area of northern parts of the Soran city in Iraq at room temperature. Results The structural elucidation of the NCs using the SEM (scanning electron microscopy), Cross-sectional EDS (electron dispersive spectroscopy), elemental mapping analysis, XRD (X-ray diffractions) and BET (Brunauer–Emmett–Teller) for detection of specific surface area of eco-NCs confirmed the formation of NCs with a large surface area. Application of green TiO2@CuO@Chromite NCs in solventless synthesis of aromatic nitriles shows high efficiency, time saving, economical aspect and ecofriendly and safe methodology. Also, the treatment process of sewage waters monitored using UV–Vis double beam spectrophotometer, optical microscopy and antibiogram tests demonstrated an efficient ability for the eco-NCs in physical and biological treatment of sewage samples. Conclusions The NCs employed in both ligand and solventless highly efficient and safe synthesis of aromatic nitriles through the cyanation of aldehydes at room temperature demonstrated the production of aryl nitriles in very good-to-excellent yields. This protocol indicated a green alternative to the existing methods since the reaction proceeds in solventless medium in the absence of any ligand and organic solvent with simple work-up procedure, low temperature, higher yield and shorter reaction time. Further, it was used in the physical and biological treatment of the real samples of sewage waters collected around the natural and residential area of northern parts of Iraq at room temperature, which shows a very good treatment ability in this process.


Author(s):  
Mengke Wang ◽  
Jun Zhu ◽  
You Zi ◽  
Zheng-Guang Wu ◽  
Haiguo Hu ◽  
...  

In recent years, two-dimensional (2D) black phosphorus (BP) has been widely applied in many fields, such as (opto)electronics, transistors, catalysis and biomedical applications due to its large surface area, tunable...


Author(s):  
Chunmei Tang ◽  
Xiaoxu Wang ◽  
Shengli Zhang

Two-dimensional MXene nanomaterials are promising anode materials for Li-ion batteries (LIBs) due to their excellent conductivity, large surface area, and high Li capability.


2019 ◽  
Vol 11 (1) ◽  
pp. 38-54 ◽  
Author(s):  
Anand Maurya ◽  
Anurag Kumar Singh ◽  
Gaurav Mishra ◽  
Komal Kumari ◽  
Arati Rai ◽  
...  

Since the development of first lipid-based nanocarrier system, about 15% of the present pharmaceutical market uses nanomedicines to achieve medical benefits. Nanotechnology is an advanced area to meliorate the delivery of compounds for improved medical diagnosis and curing disease. Nanomedicines are gaining significant interest due to the ultra small size and large surface area to mass ratio. In this review, we discuss the potential of nanotechnology in delivering of active moieties for the disease therapy including their toxicity evidences. This communication will help the formulation scientists in understanding and exploring the new aspects of nanotechnology in the field of nanomedicine.


2021 ◽  
Vol 875 ◽  
pp. 160034
Author(s):  
Na Liu ◽  
Fan Fan ◽  
Wei Xu ◽  
Hao Zhang ◽  
Qi Zhou ◽  
...  

Nanoscale ◽  
2017 ◽  
Vol 9 (46) ◽  
pp. 18311-18317 ◽  
Author(s):  
Yuan Gao ◽  
Yuanjing Lin ◽  
Zehua Peng ◽  
Qingfeng Zhou ◽  
Zhiyong Fan

Three-dimensional interconnected nanoporous structure (3-D INPOS) possesses high aspect ratio, large surface area, as well as good structural stability. Profiting from its unique interconnected architecture, the 3-D INPOS pseudocapacitor achieves a largely enhanced capacitance and rate capability.


Author(s):  
Rohit Karnik ◽  
Chuanhua Duan ◽  
Kenneth Castelino ◽  
Rong Fan ◽  
Peidong Yang ◽  
...  

Interesting transport phenomena arise when fluids are confined to nanoscale dimensions in the range of 1–100 nm. We examine three distinct effects that influence ionic and molecular transport as the size of fluidic channels is decreased to the nanoscale. First, the length scale of electrostatic interactions in aqueous solutions becomes comparable to nanochannel size and the number of surface charges becomes comparable to the number of ions in the channel. Second, the size of the channel becomes comparable to the size of biomolecules such as proteins and DNA. Third, large surface area-to-volume ratios result in rapid rates of surface reactions and can dramatically affect transport of molecules through the channel. These phenomena enable us to control transport of ions and molecules in unique ways that are not possible in larger channels. Electrostatic interactions enable local control of ionic concentrations and transport inside nanochannels through field effect in a nanofluidic transistor, which is analogous to the metal-oxide-semiconductor field effect transistor. Furthermore, by controlling surface charge in nanochannels, it is possible to create a nanofluidic diode that rectifies ionic transport through the channel. Biological binding events result in partial blockage of the channel, and can thus be sensed by a decrease in nanochannel conductance. At low ionic concentrations, the effect of biomolecular charge is dominant and it can lead to an increase in conductance. Surface reactions can also be used to control transport of molecules though the channel due to the large surface area-to-volume ratios. Rapid surface reactions enable a new technique of diffusion-limited patterning (DLP), which is useful for patterning of biomolecules and surface charge in nanochannels. These examples illustrate how electrostatic interactions, biomolecular size, and surface reactions can be used for controlling ionic and molecular transport through nanochannels. These phenomena may be useful for operations such as analyte focusing, pH and ionic concentration control, and biosensing in micro- and nanofluidic devices.


2001 ◽  
Vol 291 (3) ◽  
pp. 187-198 ◽  
Author(s):  
Tatsuro Horiuchi ◽  
Toshihiko Osaki ◽  
Toyohiko Sugiyama ◽  
Kenzi Suzuki ◽  
Toshiaki Mori

Sign in / Sign up

Export Citation Format

Share Document