scholarly journals High Power Very Low Voltage Electric Motor for Electric Vehicle

2021 ◽  
Author(s):  
Daniel Matt ◽  
Nadhem Boubaker ◽  
Mourad Aitakkache ◽  
Philippe Enrici ◽  
Jean-Jacques Huselstein ◽  
...  

Electric vehicles are often designed in the same way as their conventional counterparts based on the internal combustion engine, they are heavy machines for comfort and safety reasons, and increasingly powerful. Under these conditions, in order to simplify the motor electrical supply system by reducing the current levels, the voltage chosen for the battery is very high and can go up to 700 V. However, for many applications where the power is relatively low (< 30 kW per motor), it can be more beneficial to size the system at very low voltage (< 60 V). This approach allows to overcome many constraining safety requirements and also to use off-the-shelf components (motor controllers, connectors, etc.) that are more easily available on the market in this voltage range. There are also many regulatory provisions that may require to stay within this voltage limit. This article presents a variety of very low voltage motorisation solutions with a required power up to 100kW. They use two complementary approaches. The first is to implement an original permanent magnet synchronous machine technology with an optimised armature winding for low voltage operation. The second is based on power splitting where the electrical machine being designed to be driven by multiple controllers. Many examples of low-voltage motorised vehicles (sporty vehicle, tractor, re-motorised automobile, etc.) are illustrated in this article.


2014 ◽  
Vol 24 (01) ◽  
pp. 1550005 ◽  
Author(s):  
Fabian Khateb ◽  
Montree Kumngern ◽  
Spyridon Vlassis ◽  
Costas Psychalinos ◽  
Tomasz Kulej

This paper presents a new CMOS structure for a fully balanced differential difference amplifier (FB-DDA) designed to operate from a sub-volt supply. This structure employs the bulk-driven quasi-floating-gate (BD-QFG) technique to achieve the capability of an ultra-low voltage operation and an extended input voltage range. The proposed BD-QFG FB-DDA is suitable for ultra-low-voltage low-power applications. The circuit is designed with a single supply of 0.5 V and consumes only 357 nW of power. The proposed circuit was simulated in a 0.18-μm TSMC CMOS technology and the simulation results prove its functionality and attractive parameters. An application example of a state variable filter is also presented to confirm the usefulness of the proposed BD-QFG FB-DDA.



2010 ◽  
Vol 19 (06) ◽  
pp. 1365-1380 ◽  
Author(s):  
SUAT U. AY

A compact power-on-reset pulse generator (POR-PG) circuit with a low-power and low-voltage operation capability is presented. Proposed POR-PG was fabricated in 0.5 μm 2P3M CMOS process. It was determined from simulations and measurements that proposed POR-PG works supply voltage levels between 1.8 V and 3.3 V and supply voltage rise times between 100 ns and 1 ms. POR-PG has very small silicon footprint. Layout size of proposed POR-PG circuit was 120 μm × 5 μm in 0.5 μm CMOS process. Comparing with other POR-PG circuits in the literature, proposed design enjoys lowest power consumption (< 6 μW), smallest silicon footprint, widest supply voltage range, and additional features such as brown-out detection capability. These achieved by using a unique cascadable POR delay element that consumes very low-power.



1996 ◽  
Vol 424 ◽  
Author(s):  
A. G Chakhovskoi ◽  
M. E Malinowski ◽  
A. A Talin ◽  
T. E Felter ◽  
J. T. Trujillo ◽  
...  

ABSTRACTThe spectral response and outgassing characteristics of the three new, low-voltage phosphors combustion synthesized and electrophoretically deposited for application in field-emission flatpanel displays, are presented. The phosphors, forming a candidate Red-Blue-Green (RGB) triplet are YAG:Eu, YAG:Tb and Y2SiO5:Ce. These cathodoluminescent materials are tested with electron-beam excitation at currents up to 50 x03BC;A within the 200-2000V (eg. "low-voltage") and 3000-8000V (eg. "medium voltage") ranges. The spectral coordinates, as compared with industrially-manufactured P22 phosphors in low voltage operation, are reasonable; however, there is considerable difference in the green coordinates, and the red and green materials show significant satellite intensities. Phosphor outgassing, as a function of time, is measured by a residual gas analyzer at fixed 50 gA beam current in the low-voltage range. We find that after two hours of excitation, levels of outgassed CO, CO2 and H2 stabilize to low values.



Author(s):  
Klaus-Ruediger Peters

A new generation of high performance field emission scanning electron microscopes (FSEM) is now commercially available (JEOL 890, Hitachi S 900, ISI OS 130-F) characterized by an "in lens" position of the specimen where probe diameters are reduced and signal collection improved. Additionally, low voltage operation is extended to 1 kV. Compared to the first generation of FSEM (JE0L JSM 30, Hitachi S 800), which utilized a specimen position below the final lens, specimen size had to be reduced but useful magnification could be impressively increased in both low (1-4 kV) and high (5-40 kV) voltage operation, i.e. from 50,000 to 200,000 and 250,000 to 1,000,000 x respectively.At high accelerating voltage and magnification, contrasts on biological specimens are well characterized1 and are produced by the entering probe electrons in the outmost surface layer within -vl nm depth. Backscattered electrons produce only a background signal. Under these conditions (FIG. 1) image quality is similar to conventional TEM (FIG. 2) and only limited at magnifications >1,000,000 x by probe size (0.5 nm) or non-localization effects (%0.5 nm).



Author(s):  
Arthur V. Jones

With the introduction of field-emission sources and “immersion-type” objective lenses, the resolution obtainable with modern scanning electron microscopes is approaching that obtainable in STEM and TEM-but only with specific types of specimens. Bulk specimens still suffer from the restrictions imposed by internal scattering and the need to be conducting. Advances in coating techniques have largely overcome these problems but for a sizeable body of specimens, the restrictions imposed by coating are unacceptable.For such specimens, low voltage operation, with its low beam penetration and freedom from charging artifacts, is the method of choice.Unfortunately the technical dificulties in producing an electron beam sufficiently small and of sufficient intensity are considerably greater at low beam energies — so much so that a radical reevaluation of convential design concepts is needed.The probe diameter is usually given by



2015 ◽  
pp. 1-6
Author(s):  
Tae-Hoon Choi ◽  
Young-Jin Park ◽  
Jung-Wook Kim ◽  
Tae-Hoon Yoon


Author(s):  
Yu Sik Kong ◽  
Muralimohan Cheepu ◽  
Jin-Kyung Lee

Friction welding was chosen for its versatility in the joining of dissimilar materials with high quality. The aim of this study is to determine the optimal welding conditions for attaining quality joints by using online monitoring of acoustic emission system signals. During friction welding, the formation of cracks, defects, or any abnormalities in the joining process which have a detrimental effect on the joints quality was identified. The most widely used materials in the aerospace industry—Inconel 718 and molybdenum steel—were joined by friction welding. The precision of the joints, internal defects, and quality are major concerns for aerospace parts. The results of the present research determined the optimal welding conditions for high tensile strength by nondestructively inducing acoustic emission signals. During friction time and upset time periods, the typical waveforms and frequency spectrum of the acoustic emission signals were recorded, and their energy level, average frequency, cumulative count, and amplitude were analyzed. Both cumulative count and amplitude were found to be useful parameters for deriving the optimal welding conditions. In the initial stage of friction welding, a very high voltage of continuous form was generated with frequency characteristics of 0.44 MHz and 0.54 MHz. The signals generated during the upset stage had a low voltage, but a very high frequency of 1.56 MHz and 1.74 MHz with a burst-type signal. The amplitude of the signal generated for the optimally welded joints was about 100 dB at the friction time and about 45 dB at the upset time.





Sign in / Sign up

Export Citation Format

Share Document