scholarly journals Non Detection of HIV-1 Proviral DNA in PBMCs of the Neonates Born to Iranian HIV-infected Mothers in PMTCT Program

2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Zahra Habib ◽  
Farah Bokharaei-Salim ◽  
Seyed Jalal Kiani ◽  
Saba Garshasbi ◽  
Saeed Kalantari ◽  
...  

Background: Early diagnosis of immunodeficiency virus-1 infection in children and access to treatment for this infection is critical in decreasing infant mortality. Objectives: The aim of the current survey was to determine the presence of HIV-1 genomic RNA in plasma and proviral DNA in peripheral blood mononuclear cell (PBMC) specimens of neonates born to HIV-infected mothers. Methods: leprevention of mother-to-child transmission (PMTCT) program were enrolled in this study to compare two different diagnostic methods. After the extraction of viral RNA of plasma and genomic DNA of PBMC specimens, HIV-1 RNA and proviral DNA was tested by amplification of the long terminal repeat (LTR) region of HIV-1 using real-time PCR. Results: Out of 73 evaluated infants, 41 infants (56.2%) were male. The average age of the mothers with HIV-1 infection was 30.7 ± 5.2 (range: 19–47) years. The results revealed that none of the infants were infected with HIV-1, and also all were negative for HIV-1 genomic RNA in plasma specimen and proviral DNA of HIV-1 in PMBC samples. During the present study, 20 infants born to HIV-1 positive mothers who were not included in the PMTCT project were accidentally identified. Four infants (20%) out of these 20 infants were infected with HIV, all were infected with CRF35-AD of HIV, and none carried variants with surveillance drug-resistant mutations. Conclusions: The results of the present study showed that two molecular methods of detecting HIV infection (presence of genomic RNA of HIV-1 in plasma and proviral DNA of HIV-1 in PBMC specimens) are completely in agreement with each other, and the PMTCT program is possibly an effective program.

Author(s):  
M.A. Tyumentseva ◽  
◽  
A.I. Tyumentsev ◽  
V.G. Akimkin ◽  
◽  
...  

For the effective functioning of supervisory and health monitoring services, it is necessary to introduce modern molecular technologies into their practice. Therefore, the task of developing new effective methods for detecting pathogen, for example HIV, based on CRISPR/CAS genome editing systems, remains urgent. In the present work, guide RNAs and specific oligonucleotides were developed for preliminary amplification of highly conserved regions of the HIV-1 genome. The developed guide RNAs make it possible to detect single copies of HIV-1 proviral DNA in vitro as part of CRISPR/CAS ribonucleoprotein complexes in biological samples after preliminary amplification.


2004 ◽  
Vol 78 (23) ◽  
pp. 12996-13006 ◽  
Author(s):  
Katrien Princen ◽  
Sigrid Hatse ◽  
Kurt Vermeire ◽  
Stefano Aquaro ◽  
Erik De Clercq ◽  
...  

ABSTRACT Here we report that the N-pyridinylmethyl cyclam analog AMD3451 has antiviral activity against a wide variety of R5, R5/X4, and X4 strains of human immunodeficiency virus type 1 (HIV-1) and HIV-2 (50% inhibitory concentration [IC50] ranging from 1.2 to 26.5 μM) in various T-cell lines, CCR5- or CXCR4-transfected cells, peripheral blood mononuclear cells (PBMCs), and monocytes/macrophages. AMD3451 also inhibited R5, R5/X4, and X4 HIV-1 primary clinical isolates in PBMCs (IC50, 1.8 to 7.3 μM). A PCR-based viral entry assay revealed that AMD3451 blocks R5 and X4 HIV-1 infection at the virus entry stage. AMD3451 dose-dependently inhibited the intracellular Ca2+ signaling induced by the CXCR4 ligand CXCL12 in T-lymphocytic cells and in CXCR4-transfected cells, as well as the Ca2+ flux induced by the CCR5 ligands CCL5, CCL3, and CCL4 in CCR5-transfected cells. The compound did not interfere with chemokine-induced Ca2+ signaling through CCR1, CCR2, CCR3, CCR4, CCR6, CCR9, or CXCR3 and did not induce intracellular Ca2+ signaling by itself at concentrations up to 400 μM. In freshly isolated monocytes, AMD3451 inhibited the Ca2+ flux induced by CXCL12 and CCL4 but not that induced by CCL2, CCL3, CCL5, and CCL7. The CXCL12- and CCL3-induced chemotaxis was also dose-dependently inhibited by AMD3451. Furthermore, AMD3451 inhibited CXCL12- and CCL3L1-induced endocytosis in CXCR4- and CCR5-transfected cells. AMD3451, in contrast to the specific CXCR4 antagonist AMD3100, did not inhibit but enhanced the binding of several anti-CXCR4 monoclonal antibodies (such as clone 12G5) at the cell surface, pointing to a different interaction with CXCR4. AMD3451 is the first low-molecular-weight anti-HIV agent with selective HIV coreceptor, CCR5 and CXCR4, interaction.


2002 ◽  
Vol 76 (20) ◽  
pp. 10444-10454 ◽  
Author(s):  
Jielin Zhang ◽  
Clyde S. Crumpacker

ABSTRACT An important aspect of the pathophysiology of human immunodeficiency virus type 1 (HIV-1) infection is the ability of the virus to replicate in the host vigorously without a latent phase and to kill cells with a dynamic turnover of 1.8 × 109 cells/day and 10.3 × 109 virions/24 h. The transcription of HIV-1 RNA in acute infection occurs at two stages; the transcription of viral spliced mRNA occurs early, and the transcription of viral genomic RNA occurs later. The HIV-1 Tat protein is translated from the early spliced mRNA and is critical for HIV-1 genomic RNA expression. The cellular transcription factors are important for HIV-1 early spliced mRNA expression. In this study we show that virion nucleocapsid protein (NC) has a role in expression of HIV-1 early spliced mRNA. The HIV-1 NC migrates from the cytoplasm to the nucleus and accumulates in the nucleus at 18 h postinfection. Mutations on HIV-1 NC zinc fingers change the pattern of early viral spliced mRNA expression and result in a delayed expression of early viral mRNA in HIV-infected cells. This delayed HIV-1 early spliced mRNA expression occurs after proviral DNA has been integrated into the cellular genome, as shown by a quantitative integration assay. These results show that virion NC plays an important role in inducing HIV-1 early mRNA expression and contributes to the rapid viral replication that occurs during HIV-1 infection.


2002 ◽  
Vol 83 (6) ◽  
pp. 1343-1352 ◽  
Author(s):  
Natalie N. Zheng ◽  
Cherelyn Vella ◽  
Philippa J. Easterbrook ◽  
Rod S. Daniels

In attempts to improve isolation rates and virus yields for human immunodeficiency virus (HIV), the use of herpesvirus saimiri-immortalized T cells (HVS T cells) has been investigated as an alternative to/improvement over peripheral blood mononuclear cells (PBMCs). Here we characterize isolates rescued, in the two cell types, from two asymptomatic, long-term non-progressing HIV-1-infected individuals. All rescued viruses replicated in PBMCs and HVS T cells only, displaying a non-syncytium inducing (NSI) phenotype, and using CCR5 as co-receptor. Furthemore, PBMC/HVS T cell virus pairs displayed similar neutralization profiles. Full-length, expression-competent env genes were rescued from all virus isolates and directly from the patient samples using proviral DNA and viral RNA as templates. Compared with the sequences retrieved directly from the patient samples, both cell types showed similar selection characteristics. Whilst the selections were distinct for individual patient samples, they shared a common characteristic in selecting for viruses with increased negative charge across the V2 domain of the viral glycoproteins. The latter was observed at the env gene sequencing level for three other patients whose HIV strains were isolated in PBMCs only. This further supports a common selection for viral sequences that display a macrophage-tropic/NSI phenotype and shows that HVS T cells are a viable alternative to PBMCs for HIV-1 isolation.


Blood ◽  
1990 ◽  
Vol 76 (7) ◽  
pp. 1281-1286 ◽  
Author(s):  
D von Laer ◽  
FT Hufert ◽  
TE Fenner ◽  
S Schwander ◽  
M Dietrich ◽  
...  

Abstract Hematologic abnormalities occur in the majority of patients with acquired immunodeficiency syndrome (AIDS). Infection of the hematopoietic progenitor cells has been proposed as a potential explanation. In this study, different bone marrow cell populations, including the CD34+ hematopoietic progenitor cells, were purified by a fluorescence-activated cell sorter (FACS) and analyzed for the presence of human immunodeficiency virus-1 (HIV-1) proviral DNA using the polymerase chain reaction. A group of 14 patients with AIDS or AIDS- related complex (ARC) was studied (11 with peripheral blood cytopenias). The CD4+ helper cells in the bone marrow were found positive for HIV-1 DNA in all patients. In contrast, CD34+ progenitor cells were positive in only one patient. Two monocyte samples and two samples of CD4-/CD34- lymphocytes/blasts (mainly B and CD8 lymphocytes) were positive. Proviral DNA could not be detected in granulocytes. FACS analysis showed that the percentage of CD34+ hematopoietic progenitor cells was not altered in the bone marrow of AIDS patients in comparison with the HIV-1 seronegative controls. In contrast, the number of CD4+ lymphocytes was markedly reduced in the bone marrow of AIDS patients. These results show that the hematologic abnormalities in AIDS patients are neither explained by direct infection of the hematopoietic progenitor cells with HIV-1 nor by a depletion of progenitor cells.


2006 ◽  
Vol 87 (2) ◽  
pp. 411-418 ◽  
Author(s):  
David Marchant ◽  
Stuart J. D. Neil ◽  
Áine McKnight

This study compares the replication of primary isolates of human immunodeficiency virus type 2 (HIV-2) and type 1 (HIV-1) in monocyte-derived macrophages (MDMs). Eleven HIV-2 and five HIV-1 primary isolates that use CCR5, CXCR4 or both coreceptors to enter cells were included. Regardless of coreceptor preference, 10 of 11 HIV-2 viruses could enter, reverse transcribe and produce fully infectious virus in MDMs with efficiency equal to that in peripheral blood mononuclear cells. However, the kinetics of replication of HIV-2 compared with HIV-1 over time were distinct. HIV-2 had a burst of virus replication 2 days after infection that resolved into an apparent ‘latent state’ at day 3. HIV-1, however, continued to produce infectious virions at a lower, but steady, rate throughout the course of infection. These results may have implications for the lower pathogenesis and viral-load characteristics of HIV-2 infection.


Author(s):  
Alex Olson ◽  
Carolyn Coote ◽  
Jennifer E Snyder-Cappione ◽  
Nina Lin ◽  
Manish Sagar

Abstract Individuals infected with human immunodeficiency virus (HIV) 1 have increased inflammation, which has been associated with age-associated diseases. Plasma markers, cell-associated virus levels, and ability to stimulate RNA transcription in latently infected cell lines was examined in younger and older HIV-1–infected individuals with suppressed virus. Cell-associated RNA, but not intact provirus level, had positive correlation with plasma D-dimer levels. Compared with the younger group, the older group had higher D-dimer levels and a trend toward more cell-associated RNA but similar levels of intact proviruses. Even though all measured inflammatory markers were relatively higher in the older group, this greater inflammation did not induce more HIV-1 transcription in latently infected cell lines. Inflammation and HIV-1 RNA expression increase with age despite similar levels of intact infectious HIV DNA. While plasma inflammation is correlated with HIV-1 RNA expression in peripheral blood mononuclear cells, it does not induce HIV-1 transcription in latently infected cell lines.


2000 ◽  
Vol 74 (24) ◽  
pp. 11811-11824 ◽  
Author(s):  
Kalpana Gupta ◽  
David Ott ◽  
Thomas J. Hope ◽  
Robert F. Siliciano ◽  
Jef D. Boeke

ABSTRACT Active nuclear import of the human immunodeficiency virus type 1 (HIV-1) preintegration complex (PIC) is essential for the productive infection of nondividing cells. Nuclear import of the PIC is mediated by the HIV-1 matrix protein, which also plays several critical roles during viral entry and possibly during virion production facilitating the export of Pr55Gag and genomic RNA. Using a yeast two-hybrid screen, we identified a novel human virion-associated matrix-interacting protein (VAN) that is highly conserved in vertebrates and expressed in most human tissues. Its expression is upregulated upon activation of CD4+ T cells. VAN is efficiently incorporated into HIV-1 virions and, like matrix, shuttles between the nucleus and cytoplasm. Furthermore, overexpression of VAN significantly inhibits HIV-1 replication in tissue culture. We propose that VAN regulates matrix nuclear localization and, by extension, both nuclear import of the PIC and export of Pr55Gag and viral genomic RNA during virion production. Our data suggest that this regulatory mechanism reflects a more global process for regulation of nucleocytoplasmic transport.


2009 ◽  
Vol 53 (8) ◽  
pp. 3565-3568 ◽  
Author(s):  
Secondo Sonza ◽  
Adam Johnson ◽  
David Tyssen ◽  
Tim Spelman ◽  
Gareth R. Lewis ◽  
...  

ABSTRACT Polyanion-based microbicides have been developed to prevent the sexual transmission of human immunodeficiency virus (HIV). Recent data suggest that polyanions have the capacity to enhance HIV type 1 (HIV-1) replication at threshold antiviral concentrations. Evaluation of the microbicide candidates SPL7013 and PRO 2000 revealed no specific enhancement of two CCR5 HIV-1 strains in human peripheral blood mononuclear cells compared to enfuvirtide (Fuzeon). The enhancement effect is likely to be a function of the assay conditions and is not an intrinsic property of these polyanions.


Sign in / Sign up

Export Citation Format

Share Document