scholarly journals Pediatric Antimicrobial Stewardship Programs

2017 ◽  
Vol 22 (1) ◽  
pp. 77-80 ◽  
Author(s):  
Kristen Nichols ◽  
Sylvia Stoffella ◽  
Rachel Meyers ◽  
Jennifer Girotto ◽  

The frequent use of antimicrobials in pediatric patients has led to a significant increase in multidrug-resistant bacterial infections among children. Antimicrobial stewardship programs have been created in many hospitals in an effort to curtail and optimize the use of antibiotics. Pediatric-focused programs are necessary because of the differences in antimicrobial need and use among this patient population, unique considerations and dosing, vulnerability for resistance due to a lifetime of antibiotic exposure, and the increased risk of adverse events. This paper serves as a position statement of the Pediatric Pharmacy Advocacy Group (PPAG) who supports the implementation of antimicrobial stewardship programs for all pediatric patients. PPAG also believes that a pediatric pharmacy specialist should be included as part of that program and that services be covered by managed care organizations and government insurance entities. PPAG also recommends that states create legislation similar to that in existence in California and Missouri and that a federal Task Force for Combating Antibiotic-Resistant Bacteria be permanently established. PPAG also supports post-doctoral pharmacy training programs in antibiotic stewardship.

Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 571
Author(s):  
Nicole Zacharias ◽  
Iris Löckener ◽  
Sarah M. Essert ◽  
Esther Sib ◽  
Gabriele Bierbaum ◽  
...  

Bacterial infections have been treated effectively by antibiotics since the discovery of penicillin in 1928. A worldwide increase in the use of antibiotics led to the emergence of antibiotic resistant strains in almost all bacterial pathogens, which complicates the treatment of infectious diseases. Antibiotic-resistant bacteria play an important role in increasing the risk associated with the usage of surface waters (e.g., irrigation, recreation) and the spread of the resistance genes. Many studies show that important pathogenic antibiotic-resistant bacteria can enter the environment by the discharge of sewage treatment plants and combined sewage overflow events. Mussels have successfully been used as bio-indicators of heavy metals, chemicals and parasites; they may also be efficient bio-indicators for viruses and bacteria. In this study an influence of the discharge of a sewage treatment plant could be shown in regard to the presence of E. coli in higher concentrations in the mussels downstream the treatment plant. Antibiotic-resistant bacteria, resistant against one or two classes of antibiotics and relevance for human health could be detected in the mussels at different sampling sites of the river Rhine. No multidrug-resistant bacteria could be isolated from the mussels, although they were found in samples of the surrounding water body.


2017 ◽  
Vol 63 (11) ◽  
pp. 865-879 ◽  
Author(s):  
Ayman El-Shibiny ◽  
Salma El-Sahhar

Since their discovery in 1915, bacteriophages have been used to treat bacterial infections in animals and humans because of their unique ability to infect their specific bacterial hosts without affecting other bacterial populations. The research carried out in this field throughout the 20th century, largely in Georgia, part of USSR and Poland, led to the establishment of phage therapy protocols. However, the discovery of penicillin and sulfonamide antibiotics in the Western World during the 1930s was a setback in the advancement of phage therapy. The misuse of antibiotics has reduced their efficacy in controlling pathogens and has led to an increase in the number of antibiotic-resistant bacteria. As an alternative to antibiotics, bacteriophages have become a topic of interest with the emergence of multidrug-resistant bacteria, which are a threat to public health. Recent studies have indicated that bacteriophages can be used indirectly to detect pathogenic bacteria or directly as biocontrol agents. Moreover, they can be used to develop new molecules for clinical applications, vaccine production, drug design, and in the nanomedicine field via phage display.


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 688
Author(s):  
Shashi B. Kumar ◽  
Shanvanth R. Arnipalli ◽  
Ouliana Ziouzenkova

Antibiotics have been used as essential therapeutics for nearly 100 years and, increasingly, as a preventive agent in the agricultural and animal industry. Continuous use and misuse of antibiotics have provoked the development of antibiotic resistant bacteria that progressively increased mortality from multidrug-resistant bacterial infections, thereby posing a tremendous threat to public health. The goal of our review is to advance the understanding of mechanisms of dissemination and the development of antibiotic resistance genes in the context of nutrition and related clinical, agricultural, veterinary, and environmental settings. We conclude with an overview of alternative strategies, including probiotics, essential oils, vaccines, and antibodies, as primary or adjunct preventive antimicrobial measures or therapies against multidrug-resistant bacterial infections. The solution for antibiotic resistance will require comprehensive and incessant efforts of policymakers in agriculture along with the development of alternative therapeutics by experts in diverse fields of microbiology, biochemistry, clinical research, genetic, and computational engineering.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1587
Author(s):  
Feng Wang ◽  
Xiaohang Liu ◽  
Zhengyu Deng ◽  
Yao Zhang ◽  
Xinyu Ji ◽  
...  

With the increasing spread of multidrug-resistant bacterial pathogens, it is of great importance to develop alternatives to conventional antibiotics. Here, we report the generation of a chimeric phage lysin, MLTphg, which was assembled by joining the lysins derived from Meiothermus bacteriophage MMP7 and Thermus bacteriophage TSP4 with a flexible linker via chimeolysin engineering. As a potential antimicrobial agent, MLTphg can be obtained by overproduction in Escherichia coli BL21(DE3) cells and the following Ni-affinity chromatography. Finally, we recovered about 40 ± 1.9 mg of MLTphg from 1 L of the host E. coli BL21(DE3) culture. The purified MLTphg showed peak activity against Staphylococcus aureus ATCC6538 between 35 and 40 °C, and maintained approximately 44.5 ± 2.1% activity at room temperature (25 °C). Moreover, as a produced chimera, it exhibited considerably improved bactericidal activity against Staphylococcus aureus (2.9 ± 0.1 log10 reduction was observed upon 40 nM MLTphg treatment at 37 °C for 30 min) and also a group of antibiotic-resistant bacteria compared to its parental lysins, TSPphg and MMPphg. In the current age of growing antibiotic resistance, our results provide an engineering basis for developing phage lysins as novel antimicrobial agents and shed light on bacteriophage-based strategies to tackle bacterial infections.


2021 ◽  
Vol 15 (10) ◽  
pp. 2506-2511
Author(s):  
Nayyab Sultan ◽  
Sabahat Javaid Butt ◽  
Wajeeha Mehak ◽  
Samreen Qureshi ◽  
Syed Hamza Abbas ◽  
...  

Antibiotics have played a crucial role in the treatment of bacterial infections. Past few decades are marked with advancement of multidrug resistant (MDR) pathogens, which have endangered antibiotic’s therapeutic efficacy. Scientific world is now struggling with the crisis of MDR pathogens. This supreme matter demands careful attention or otherwise it would jeopardize clinical management of infectious diseases. Implication of alternative approaches can pave a new way in the treatment of these troublesome bacteria. Tea leaves are known to pose antibacterial activity against many pathogenic microorganisms. This review has summarized the antibacterial potential of tea leave’s extracts against resistant bacterial pathogens such as Staphylococcus aureus, Pseudomonas aeruginosa, Helicobacter pylori, Escherichia coli, Klebsiella pneumonia, Salmonella typhi, Acenitobacter spp, Campylobacter spp. Consumption of natural products such as tea may very well replace, minimize or obliterate this complicated situation. Keywords: Anti-bacterial, Tea, Camellia sinensis, Drug resistant bacteria, Antibiotic resistant bacteria, Synergism, Polyphenols.


2016 ◽  
Vol 29 (2) ◽  
pp. 321-347 ◽  
Author(s):  
Matthew E. Falagas ◽  
Evridiki K. Vouloumanou ◽  
George Samonis ◽  
Konstantinos Z. Vardakas

SUMMARYThe treatment of bacterial infections suffers from two major problems: spread of multidrug-resistant (MDR) or extensively drug-resistant (XDR) pathogens and lack of development of new antibiotics active against such MDR and XDR bacteria. As a result, physicians have turned to older antibiotics, such as polymyxins, tetracyclines, and aminoglycosides. Lately, due to development of resistance to these agents, fosfomycin has gained attention, as it has remained active against both Gram-positive and Gram-negative MDR and XDR bacteria. New data of higher quality have become available, and several issues were clarified further. In this review, we summarize the available fosfomycin data regarding pharmacokinetic and pharmacodynamic properties, thein vitroactivity against susceptible and antibiotic-resistant bacteria, mechanisms of resistance and development of resistance during treatment, synergy and antagonism with other antibiotics, clinical effectiveness, and adverse events. Issues that need to be studied further are also discussed.


2021 ◽  
Author(s):  
Matthew Mitcheltree ◽  
Amarnath Pisipati ◽  
Egor A. Syroegin ◽  
Katherine J. Silvestre ◽  
Dorota Klepacki ◽  
...  

The dearth of new medicines effective against antibiotic-resistant bacteria presents a growing global public health concern. For more than five decades, the search for new antibiotics has relied heavily upon the chemical modification of natural products (semi-synthesis), a method ill-equipped to combat rapidly evolving resistance threats. Semi-synthetic modifications are typically of limited scope within polyfunctional antibiotics, usually increase molecular weight, and seldom permit modifications of the underlying scaffold. When properly designed, fully synthetic routes can easily address these shortcomings. Here we report the structure-guided design and component-based synthesis of a rigid oxepanoproline scaffold which, when linked to the aminooctose residue of clindamycin, produces an antibiotic of exceptional potency and spectrum of activity, here named iboxamycin. Iboxamycin is effective in strains expressing Erm and Cfr rRNA methyltransferase enzymes, products of genes that confer resistance to all clinically relevant antibiotics targeting the large ribosomal subunit, namely macrolides, lincosamides, phenicols, oxazolidinones, pleuromutilins, and streptogramins. X-ray crystallographic studies of iboxamycin in complex with the native 70S bacterial ribosome, as well as the Erm-methylated 70S ribosome, uncover the structural basis for this enhanced activity, including an unforeseen and unprecedented displacement of upon antibiotic binding. In mice, iboxamycin is orally bioavailable, safe, and effective in treating bacterial infections, testifying to the capacity for chemical synthesis to provide new antibiotics in an era of rising resistance.


2021 ◽  
Author(s):  
Matthew Mitcheltree ◽  
Amarnath Pisipati ◽  
Egor A. Syroegin ◽  
Katherine J. Silvestre ◽  
Dorota Klepacki ◽  
...  

The dearth of new medicines effective against antibiotic-resistant bacteria presents a growing global public health concern. For more than five decades, the search for new antibiotics has relied heavily upon the chemical modification of natural products (semi-synthesis), a method ill-equipped to combat rapidly evolving resistance threats. Semi-synthetic modifications are typically of limited scope within polyfunctional antibiotics, usually increase molecular weight, and seldom permit modifications of the underlying scaffold. When properly designed, fully synthetic routes can easily address these shortcomings. Here we report the structure-guided design and component-based synthesis of a rigid oxepanoproline scaffold which, when linked to the aminooctose residue of clindamycin, produces an antibiotic of exceptional potency and spectrum of activity, here named iboxamycin. Iboxamycin is effective in strains expressing Erm and Cfr rRNA methyltransferase enzymes, products of genes that confer resistance to all clinically relevant antibiotics targeting the large ribosomal subunit, namely macrolides, lincosamides, phenicols, oxazolidinones, pleuromutilins, and streptogramins. X-ray crystallographic studies of iboxamycin in complex with the native 70S bacterial ribosome, as well as the Erm-methylated 70S ribosome, uncover the structural basis for this enhanced activity, including an unforeseen and unprecedented displacement of upon antibiotic binding. In mice, iboxamycin is orally bioavailable, safe, and effective in treating bacterial infections, testifying to the capacity for chemical synthesis to provide new antibiotics in an era of rising resistance.


2021 ◽  
Vol 10 (16) ◽  
pp. e34101623190
Author(s):  
Débora Brito Goulart

Urinary tract infection (UTI) caused by uropathogenic Escherichia coli (UPEC) is one of the most prevalent bacterial infections and is a major cause of health-related morbidity and hospital costs worldwide. The rising bacterial resistance to routinely given antibiotics for infected individuals is becoming a significant source of concern. Current research shows that UPEC is becoming more resistant to multiple antibiotic classes, including fluoroquinolones, beta-lactams, and aminoglycosides, as a result of genetic determinants of resistance and multidrug-resistant clones. Knowledge of the local etiology and the sensitivity profile of the most common uropathogens to antibiotics should guide decisions in the empirical therapy of uncomplicated UTI. Given the high prevalence of UTI and multidrug-resistant bacteria, preventative measures such as the development of an efficient vaccination are essential. The current work is an integrated literature review that synthesizes information on UTIs caused by antibiotic-resistant uropathogenic E. coli and considers the practical implications of key research results.


mBio ◽  
2020 ◽  
Vol 11 (4) ◽  
Author(s):  
Mylene Vaillancourt ◽  
Peter Jorth

ABSTRACT Coronavirus disease 2019 (COVID-19) is the greatest pandemic of our generation, with 16 million people affected and 650,000 deaths worldwide so far. One of the risk factors associated with COVID-19 is secondary bacterial pneumonia. In recent studies on COVID-19 patients, secondary bacterial infections were significantly associated with worse outcomes and death despite antimicrobial therapies. In the past, the intensive use of antibiotics during the severe acute respiratory syndrome coronavirus (SARS-CoV) pandemic led to increases in the prevalence of multidrug-resistant bacteria. The rising number of antibiotic-resistant bacteria and our decreasing capacity to eradicate them not only render us more vulnerable to bacterial infections but also weaken us during viral pandemics. The COVID-19 pandemic reminds us of the great health challenges we are facing, especially regarding antibiotic-resistant bacteria.


Sign in / Sign up

Export Citation Format

Share Document