scholarly journals Bacterial communities associated with cell phones and shoes

Author(s):  
David A Coil ◽  
Russell Y Neches ◽  
Jenna M Lang ◽  
Guillaume Jospin ◽  
Wendy E Brown ◽  
...  

Background: Every human being carries with them a collection of microbes, a collection that is likely both unique to that person, but also dynamic as a result of significant flux with the surrounding environment. The interaction of the human microbiome (i.e., the microbes that are found directly in contact with a person in places such as the gut, mouth, and skin) and the microbiome of accessory objects (e.g., shoes, clothing, phones, jewelry) is of potential interest to both epidemiology and the developing field of microbial forensics. Therefore, the microbiome of personal accessories are of interest because they serve as both a microbial source and sink for an individual, they may provide information about the microbial exposure experienced by an individual, and they can be sampled non-invasively. Findings: We report here a large-scale study of the microbiota found on cell phones and shoes. Cell phones serve as a potential source and sink for skin and oral microbiota, while shoes can act as sampling devices for the microbial environmental experience. Using 16S rRNA gene sequencing, we characterized the microbiota of thousands of paired sets of cell phones and shoes from individuals at sporting events, museums, and other venues around the United States. Conclusions: We place this data in the context of previous studies and demonstrate that the microbiota of phones and shoes are different. This difference is driven largely by the presence of “environmental” taxa (taxa from groups that tend to be found in places like soil) on shoes and human-associated taxa (taxa from groups that are abundant in the human microbiome) on phones. This large dataset also contains many novel taxa, highlighting the fact that much of microbial diversity remains uncharacterized, even on commonplace objects.

2019 ◽  
Author(s):  
David A Coil ◽  
Russell Y Neches ◽  
Jenna M Lang ◽  
Guillaume Jospin ◽  
Wendy E Brown ◽  
...  

Background: Every human being carries with them a collection of microbes, a collection that is likely both unique to that person, but also dynamic as a result of significant flux with the surrounding environment. The interaction of the human microbiome (i.e., the microbes that are found directly in contact with a person in places such as the gut, mouth, and skin) and the microbiome of accessory objects (e.g., shoes, clothing, phones, jewelry) is of potential interest to both epidemiology and the developing field of microbial forensics. Therefore, the microbiome of personal accessories are of interest because they serve as both a microbial source and sink for an individual, they may provide information about the microbial exposure experienced by an individual, and they can be sampled non-invasively. Findings: We report here a large-scale study of the microbiota found on cell phones and shoes. Cell phones serve as a potential source and sink for skin and oral microbiota, while shoes can act as sampling devices for the microbial environmental experience. Using 16S rRNA gene sequencing, we characterized the microbiota of thousands of paired sets of cell phones and shoes from individuals at sporting events, museums, and other venues around the United States. Conclusions: We place this data in the context of previous studies and demonstrate that the microbiota of phones and shoes are different. This difference is driven largely by the presence of “environmental” taxa (taxa from groups that tend to be found in places like soil) on shoes and human-associated taxa (taxa from groups that are abundant in the human microbiome) on phones. This large dataset also contains many novel taxa, highlighting the fact that much of microbial diversity remains uncharacterized, even on commonplace objects.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9235
Author(s):  
David A. Coil ◽  
Russell Y. Neches ◽  
Jenna M. Lang ◽  
Guillaume Jospin ◽  
Wendy E. Brown ◽  
...  

Background Every human being carries with them a collection of microbes, a collection that is likely both unique to that person, but also dynamic as a result of significant flux with the surrounding environment. The interaction of the human microbiome (i.e., the microbes that are found directly in contact with a person in places such as the gut, mouth, and skin) and the microbiome of accessory objects (e.g., shoes, clothing, phones, jewelry) is of potential interest to both epidemiology and the developing field of microbial forensics. Therefore, the microbiome of personal accessories are of interest because they serve as both a microbial source and sink for an individual, they may provide information about the microbial exposure experienced by an individual, and they can be sampled non-invasively. Findings We report here a large-scale study of the microbiome found on cell phones and shoes. Cell phones serve as a potential source and sink for skin and oral microbiome, while shoes can act as sampling devices for microbial environmental experience. Using 16S rRNA gene sequencing, we characterized the microbiome of thousands of paired sets of cell phones and shoes from individuals at sporting events, museums, and other venues around the United States. Conclusions We place this data in the context of previous studies and demonstrate that the microbiome of phones and shoes are different. This difference is driven largely by the presence of “environmental” taxa (taxa from groups that tend to be found in places like soil) on shoes and human-associated taxa (taxa from groups that are abundant in the human microbiome) on phones. This large dataset also contains many novel taxa, highlighting the fact that much of microbial diversity remains uncharacterized, even on commonplace objects.


Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4224
Author(s):  
Ramon V. Cortez ◽  
Andrea Fernandes ◽  
Luiz Gustavo Sparvoli ◽  
Marina Padilha ◽  
Rubens Feferbaum ◽  
...  

The initial colonization of the human microbiota is of paramount importance. In this context, the oropharyngeal administration of colostrum is a safe, viable, and well-tolerated practice even by the smallest preterm infants. Therefore, this study evaluated the effects of oropharyngeal administration of colostrum on the establishment of preterm infants’ oral microbiota. A longitudinal observational study was carried out with 20 premature neonates, divided into two groups: one receiving the protocol (Oropharyngeal Administration of Colostrum; OAC) and the other one receiving Standard Caare (SC). Saliva samples were collected from the newborns weekly during the study period (from the day of birth until the 21st day of life) for analysis of oral microbiota through 16S rRNA gene sequencing. We observed that the colonization of the oral microbiota of preterm newborns preseanted a higher relative abundance of Staphylococcus on the 7th day of life, mainly in the OAC group. Additionally, an increased abundance of Bifidobacterium and Bacteroides was observed in the OAC group at the first week of life. Regarding alpha and beta diversity, time was a key factor in the oral modulation of both groups, showing how dynamic this environment is in early life.


mSphere ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Shinya Kageyama ◽  
Mikari Asakawa ◽  
Toru Takeshita ◽  
Yukari Ihara ◽  
Shunsuke Kanno ◽  
...  

ABSTRACTNewborns are constantly exposed to various microbes from birth; hence, diverse commensal bacteria colonize the oral cavity. However, how or when these bacteria construct a complex and stable ecosystem remains unclear. This prospective cohort study examined the temporal changes in bacterial diversity and composition in tongue microbiota during infancy. We longitudinally collected a total of 464 tongue swab samples from 8 infants (age of <6 months at baseline) for approximately 2 years. We also collected samples from 32 children (aged 0 to 2 years) and 73 adults (aged 20 to 29 years) cross-sectionally as control groups. Bacterial diversities and compositions were determined by 16S rRNA gene sequencing. The tongue bacterial diversity in infancy, measured as the number of observed operational taxonomic units (OTUs), rapidly increased and nearly reached the same level as that in adults by around 80 weeks. The overall tongue bacterial composition in the transitional phase, 80 to 120 weeks, was more similar to that of adults than to that of the early exponential phase (EEP), 10 to 29 weeks, according to analysis of similarities. Dominant OTUs in the EEP corresponding toStreptococcus perorisandStreptococcus lactariusexponentially decreased immediately after EEP, around 30 to 49 weeks, whereas several OTUs corresponding toGranulicatella adiacens,Actinomyces odontolyticus, andFusobacterium periodonticumreciprocally increased during the same period. These results suggest that a drastic compositional shift of tongue microbiota occurs before the age of 1 year, and then bacterial diversity and overall bacterial composition reach levels comparable to those in adults by the age of 2 years.IMPORTANCEEvaluating the development of oral microbiota during infancy is important for understanding the subsequent colonization of bacterial species and the process of formation of mature microbiota in the oral cavity. We examined tongue microbiota longitudinally collected from 8 infants and found that drastic compositional shifts in tongue microbiota occur before the age of 1 year, and then bacterial diversity and overall bacterial composition reach levels comparable to those in adults by the age of 2 years. These results may be helpful for preventing the development of various diseases associated with oral microbiota throughout life.


Author(s):  
Yi-Jing Jia ◽  
Ying Liao ◽  
Yong-Qiao He ◽  
Mei-Qi Zheng ◽  
Xia-Ting Tong ◽  
...  

The oral microbiota has been observed to be influenced by cigarette smoking and linked to several human diseases. However, research on the effect of cigarette smoking on the oral microbiota has not been systematically conducted in the Chinese population. We profiled the oral microbiota of 316 healthy subjects in the Chinese population by 16S rRNA gene sequencing. The alpha diversity of oral microbiota was different between never smokers and smokers (P = 0.002). Several bacterial taxa were first reported to be associated with cigarette smoking by LEfSe analysis, including Moryella (q = 1.56E-04), Bulleidia (q = 1.65E-06), and Moraxella (q = 3.52E-02) at the genus level and Rothia dentocariosa (q = 1.55E-02), Prevotella melaninogenica (q = 8.48E-08), Prevotella pallens (q = 4.13E-03), Bulleidia moorei (q = 1.79E-06), Rothia aeria (q = 3.83E-06), Actinobacillus parahaemolyticus (q = 2.28E-04), and Haemophilus parainfluenzae (q = 4.82E-02) at the species level. Two nitrite-producing bacteria that can increase the acidity of the oral cavity, Actinomyces and Veillonella, were also enriched in smokers with FDR-adjusted q-values of 3.62E-06 and 1.10E-06, respectively. Notably, we observed that two acid production-related pathways, amino acid-related enzymes (q = 6.19E-05) and amino sugar and nucleotide sugar metabolism (q = 2.63E-06), were increased in smokers by PICRUSt analysis. Finally, the co-occurrence analysis demonstrated that smoker-enriched bacteria were significantly positively associated with each other and were negatively correlated with the bacteria decreased in smokers. Our results suggested that cigarette smoking may affect oral health by creating a different environment by altering bacterial abundance, connections among oral microbiota, and the microbiota and their metabolic function.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ryan R. Cook ◽  
Jennifer A. Fulcher ◽  
Nicole H. Tobin ◽  
Fan Li ◽  
David J. Lee ◽  
...  

Abstract Methamphetamine (MA) use is a major public health problem in the United States, especially among people living with HIV (PLWH). Many MA-induced neurotoxic effects are mediated by inflammation and gut microbiota may play a role in this process, yet the effects of MA on the microbiome have not been adequately explored. Therefore, we performed 16S rRNA gene sequencing on rectal swab samples from 381 men who have sex with men, 48% of whom were PLWH and 41% of whom used MA. We compared microbiome composition between MA users and non-users while testing for potential interactions with HIV and controlling for numerous confounders using inverse probability of treatment weighting. We found that MA use explained significant variation in overall composition (R2 = 0.005, p = 0.008) and was associated with elevated Finegoldia, Parvimonas, Peptoniphilus, and Porphyromonas and reduced Butyricicoccus and Faecalibacterium, among others. Genera including Actinomyces and Streptobacillus interacted with HIV status, such that they were increased in HIV+ MA users. Finegoldia and Peptoniphilus increased with increasing frequency of MA use, among others. In summary, MA use was associated with a microbial imbalance favoring pro-inflammatory bacteria, including some with neuroactive potential and others that have previously been associated with poor HIV outcomes.


2021 ◽  
Vol 9 (5) ◽  
pp. 1030
Author(s):  
Ke Liu ◽  
Siyu Chen ◽  
Jing Huang ◽  
Feihong Ren ◽  
Tingyu Yang ◽  
...  

The oral microbiota can be affected by several factors; however, little is known about the relationship between diet, ethnicity and commensal oral microbiota among school children living in close geographic proximity. In addition, the relationship between the oral and gut microbiota remains unclear. We collected saliva from 60 school children from the Tibetan, Han and Hui ethnicities for a 16S rRNA gene sequencing analysis and comparison with previously collected fecal samples. The study revealed that Bacteroidetes and Proteobacteria were the dominant phyla in the oral microbiota. The Shannon diversity was lowest in the Tibetan group. A PCA showed a substantial overlap in the distribution of the taxa, indicating a high degree of conservation among the oral microbiota across ethnic groups while the enrichment of a few specific taxa was observed across different ethnic groups. The consumption of seafood, poultry, sweets and vegetables was significantly correlated with multiple oral microbiotas. Furthermore, 123 oral genera were significantly associated with 191 gut genera. A principal coordinate analysis revealed that the oral microbiota clustered separately from the gut microbiota. This work extends the findings of previous studies comparing microbiota from human populations and provides a basis for the exploration of the interactions governing the tri-partite relationship between diet, oral microbiota and gut microbiota.


2021 ◽  
Author(s):  
David Schult ◽  
Sandra Reitmeier ◽  
Plamena Koyumdzhieva ◽  
Moritz Middelhof ◽  
Johanna Erber ◽  
...  

Objective: There is a growing debate about the involvement of the gut microbiome in COVID-19, although it is not conclusively understood whether the microbiome has an impact on COVID-19, or vice versa, especially as analysis of amplicon data in hospitalized patients requires sophisticated cohort recruitment and integration of clinical parameters. Here, we analyzed fecal and saliva samples from SARS-CoV-2 infected and post COVID-19 patients and controls considering multiple influencing factors during hospitalization. Design: 16S rRNA gene sequencing was performed on fecal and saliva samples from 108 COVID-19 and 22 post COVID-19 patients, 20 pneumonia controls and 26 asymptomatic controls. Patients were recruited over the first and second corona wave in Germany and detailed clinical parameters were considered. Serial samples per individual allowed intra-individual analysis. Results: We found the gut and oral microbiota to be altered depending on number and type of COVID-19-associated complications and disease severity. The occurrence of individual complications was correlated with low-risk (e.g., Faecalibacterium prausznitzii) and high-risk bacteria (e.g., Parabacteroides). We demonstrated that a stable gut bacterial composition was associated with a favorable disease progression. Based on gut microbial profiles, we identified a model to estimate mortality in COVID-19. Conclusion: Gut microbiota are associated with the occurrence of complications in COVID-19 and may thereby influencing disease severity. A stable gut microbial composition may contribute to a favorable disease progression and using bacterial signatures to estimate mortality could contribute to diagnostic approaches. Importantly, we highlight challenges in the analysis of microbial data in the context of hospitalization.


2017 ◽  
Author(s):  
Tobin J. Hammer ◽  
Daniel H. Janzen ◽  
Winnifred Hallwachs ◽  
Samuel L. Jaffe ◽  
Noah Fierer

AbstractMany animals are inhabited by microbial symbionts that influence their hosts’ development, physiology, ecological interactions, and evolutionary diversification. However, firm evidence for the existence and functional importance of resident microbiomes in larval Lepidoptera (caterpillars) is lacking, despite the fact that these insects are enormously diverse, major agricultural pests, and dominant herbivores in many ecosystems. Using 16S rRNA gene sequencing and quantitative PCR, we characterized the gut microbiomes of wild leaf-feeding caterpillars in the United States and Costa Rica, representing 124 species from 16 families. Compared with other insects and vertebrates assayed using the same methods, the microbes we detected in caterpillar guts were unusually low-density and highly variable among individuals. Furthermore, the abundance and composition of leaf-associated microbes were reflected in the feces of caterpillars consuming the same plants. Thus, microbes ingested with food are present (though possibly dead or dormant) in the caterpillar gut, but host-specific, resident symbionts are largely absent. To test whether transient microbes might still contribute to feeding and development, we conducted an experiment on field-collected caterpillars of the model speciesManduca sexta. Antibiotic suppression of gut bacterial activity did not significantly affect caterpillar weight gain, development, or survival. The high pH, simple gut structure, and fast transit times that typify caterpillar digestive physiology may prevent microbial colonization. Moreover, host-encoded digestive and detoxification mechanisms likely render microbes unnecessary for caterpillar herbivory. Caterpillars illustrate the potential ecological and evolutionary benefits of independence from symbionts, a lifestyle which may be widespread among animals.


2021 ◽  
Vol 17 (11) ◽  
pp. e1009501
Author(s):  
Sean M. Devlin ◽  
Axel Martin ◽  
Irina Ostrovnaya

In recent literature, the human microbiome has been shown to have a major influence on human health. To investigate this impact, scientists study the composition and abundance of bacterial species, commonly using 16S rRNA gene sequencing, among patients with and without a disease or condition. Methods for such investigations to date have focused on the association between individual bacterium and an outcome, and higher-order pairwise relationships or interactions among bacteria are often avoided due to the substantial increase in dimension and the potential for spurious correlations. However, overlooking such relationships ignores the environment of the microbiome, where there is dynamic cooperation and competition among bacteria. We present a method for identifying and ranking pairs of bacteria that have a differential dichotomized relationship across outcomes. Our approach, implemented in an R package PairSeek, uses the stability selection framework with data-driven dichotomized forms of the pairwise relationships. We illustrate the properties of the proposed method using a published oral cancer data set and a simulation study.


Sign in / Sign up

Export Citation Format

Share Document