scholarly journals The transcription factor Pitx2 positions the embryonic axis and regulates twinning

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Angela Torlopp ◽  
Mohsin A F Khan ◽  
Nidia M M Oliveira ◽  
Ingrid Lekk ◽  
Luz Mayela Soto-Jiménez ◽  
...  

Embryonic polarity of invertebrates, amphibians and fish is specified largely by maternal determinants, which fixes cell fates early in development. In contrast, amniote embryos remain plastic and can form multiple individuals until gastrulation. How is their polarity determined? In the chick embryo, the earliest known factor is cVg1 (homologous to mammalian growth differentiation factor 1, GDF1), a transforming growth factor beta (TGFβ) signal expressed posteriorly before gastrulation. A molecular screen to find upstream regulators of cVg1 in normal embryos and in embryos manipulated to form twins now uncovers the transcription factor Pitx2 as a candidate. We show that Pitx2 is essential for axis formation, and that it acts as a direct regulator of cVg1 expression by binding to enhancers within neighbouring genes. Pitx2, Vg1/GDF1 and Nodal are also key actors in left–right asymmetry, suggesting that the same ancient polarity determination mechanism has been co-opted to different functions during evolution.

2018 ◽  
Author(s):  
Scott D Findlay ◽  
Lynne-Marie Postovit

AbstractNODAL, a morphogen belonging to the transforming growth factor beta (TGβ) superfamily, is essential during embryogenesis where it induces axis formation and left-right asymmetry.NODALis also required for the maintenance of human embryonic stem cell pluripotency, and emerges in many cancer types concomitant with metastasis and therapy resistance. Several enhancer elements have been shown to regulate mouseNodalexpression and studies have delineated mechanisms by which mRNA splicing and translation of NODAL homologues are regulated in model organisms. However, little is known regarding the co-transcriptional and post-transcriptional processing of human NODAL. Herein, we describe hitherto unreported RNAs which are transcribed from theNODALlocus, including an antisense transcript, a circular transcript, and multiple splice variants. These transcripts demonstrate the complexity ofNODALexpression and highlight the need to consider each NODAL variant when attempting to quantify or target this morphogen.


2015 ◽  
Vol 58 (4) ◽  
pp. 553-561 ◽  
Author(s):  
Glauco Akelinghton Freire Vitiello ◽  
Roberta Losi Guembarovski ◽  
Carlos Eduardo Coral de Oliveira ◽  
Marla Karine Amarante ◽  
Aparecida de Lourdes Perim ◽  
...  

Glycobiology ◽  
2019 ◽  
Vol 30 (5) ◽  
pp. 301-311 ◽  
Author(s):  
Ling Xu ◽  
Fenglin Liu ◽  
Can Li ◽  
Shuxuan Li ◽  
Hao Wu ◽  
...  

Abstract The sulfated polysaccharide fucoidan displays excellent anticancer properties with low toxicity in many kinds of cancers. However, its detailed pharmacological effect and mechanism of action in gastric carcinoma remains unclear. In this study, we found that fucoidan could suppress gastric cancer (GC) cell growth, as well as cell migration and invasion. A cytokine expression screen demonstrated that transforming growth factor beta 1 (TGF-β1) secretion was decreased in fucoidan-treated cells. Fucoidan has been reported to be a platelet agonist for the C-type lectin-like receptor 2 (CLEC-2), and our previous research found that upregulation of CLEC-2 inhibited GC progression. Here, we confirmed that fucoidan, combined with CLEC-2, significantly increased CLEC-2 expression in GC cells via the transcription factor caudal type homeobox transcription factor 2, an important regulator of gut homeostasis. In addition, the inhibitory effect of fucoidan on the GC cell malignant phenotype and TGF-β1 secretion could be restored by knocking down CLEC-2. Thus, our data suggest that fucoidan targets CLEC-2 to exert antitumorigenesis and antimetastatic activity, suggesting that fucoidan is a promising treatment for gastric carcinoma.


2011 ◽  
Vol 392 (5) ◽  
Author(s):  
Johannes M. Nuessle ◽  
Klaudia Giehl ◽  
Rosa Herzog ◽  
Sylvia Stracke ◽  
Andre Menke

Abstract Neointimal formation in atheromatous blood vessels is associated with both growth factor-induced differentiation of smooth muscle cells and endothelial-to-mesenchymal transition. Transforming growth factor beta (TGFβ)-signaling is well known to play a critical role in the regulation of vessel remodeling as well as in atherosclerosis and restenosis. Here, we investigated the role of TGFβ1 and N-cadherin on the differentiation and migration of human vascular smooth muscle cells (VSMC). TGFβ1-treatment of cultured VSMC reduced their migratory activity as determined in cell migration assays. This reduced migration correlated with increased concentration of N-cadherin on mRNA and protein level. The TGFβ1-induced increase of N-cadherin was sensitive against pharmacological inhibition of the ALK5 TGFβ receptor and was accompanied by TGFβ1-induced expression of the transcription factor snail1. Activation of N-cadherin by using a HAV-containing peptide of N-cadherin also decreased the migration of VSMC. N-cadherin-mediated suppression of VSMC migration was associated with an increased activity of RhoA, which is activated by binding of the HAV peptide to N-cadherin. Our results demonstrate that TGFβ1 induces the differentiation of primary VSMC cells by Smad2/3-dependent up-regulation of the transcription factor snail1 and subsequently of N-cadherin, leading to inhibition of VSMC migration by RhoA-dependent modulation of the actin cytoskeleton.


Development ◽  
1996 ◽  
Vol 122 (12) ◽  
pp. 3735-3743 ◽  
Author(s):  
A. Renucci ◽  
V. Lemarchandel ◽  
F. Rosa

The role of Transforming Growth Factor beta (TGF-beta)-related molecules in axis formation and mesoderm patterning in vertebrates has been extensively documented, but the identity and mechanisms of action of the endogenous molecules remained uncertain. In this study, we isolate a novel serine/threonine kinase type I receptor, TARAM-A, expressed during early zebrafish embryogenesis first ubiquitously and then restricted to dorsal mesoderm during gastrulation. A constitutive form of the receptor is able to induce the most anterior dorsal mesoderm rapidly and to confer an anterior organizing activity. By contrast, the wild-type form is only able to induce a local expansion of the dorsal mesoderm. Thus an activated form of TARAM-A is sufficient to induce dorsoanterior structures and TARAM-A may be activated by dorsally localized signals. Our data suggest the existence in fish of a specific TGF-beta-related pathway for anterior dorsal mesoderm induction, possibly mediated by TARAM-A and activated at the late blastula stage by localized dorsal determinant.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Miran Rada ◽  
Audrey Kapelanski-Lamoureux ◽  
Stephanie Petrillo ◽  
Sébastien Tabariès ◽  
Peter Siegel ◽  
...  

AbstractColorectal cancer liver metastasis (CRCLM) has two major histopathological growth patterns: angiogenic desmoplastic and non-angiogenic replacement. The replacement lesions obtain their blood supply through vessel co-option, wherein the cancer cells hijack pre-existing blood vessels of the surrounding liver tissue. Consequentially, anti-angiogenic therapies are less efficacious in CRCLM patients with replacement lesions. However, the mechanisms which drive vessel co-option in the replacement lesions are unknown. Here, we show that Runt Related Transcription Factor-1 (RUNX1) overexpression in the cancer cells of the replacement lesions drives cancer cell motility via ARP2/3 to achieve vessel co-option. Furthermore, overexpression of RUNX1 in the cancer cells is mediated by Transforming Growth Factor Beta-1 (TGFβ1) and thrombospondin 1 (TSP1). Importantly, RUNX1 knockdown impaired the metastatic capability of colorectal cancer cells in vivo and induced the development of angiogenic lesions in liver. Our results confirm that RUNX1 may be a potential target to overcome vessel co-option in CRCLM.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3702-3702
Author(s):  
Jenee Mitchell ◽  
Egle Kvedaraite ◽  
Tatiana von Bahr Greenwood ◽  
Jan-Inge Henter ◽  
Daniel G Pellicci ◽  
...  

Abstract Introduction: Langerhans cell histiocytosis (LCH) is a rare disease involving inflammatory lesions that can occur in essentially any organ of the body. LCH lesions are defined by the presence of CD1a+/CD207+ myeloid lineage cells (LCH cells), which often have mutations within the RAS/RAF/MEK/ERK pathway and constitutive activation of ERK. A range of other immune cells are also present within lesions including an enrichment of Foxp3 regulatory T cells (Tregs). The immune suppressive cytokine transforming growth factor beta (TGF-β), which is commonly produced by Foxp3 Tregs has also been detected within lesions and blood from patients with active LCH disease. Groups have suggested that LCH cells are a source of TGF-β and that TGF-β is one of the drivers of the LCH cell phenotype. Given the enrichment of Foxp3 Tregs and the presence of TGF-β within LCH lesions it is conceivable that Foxp3 Tregs too are a source of TGF-β production. Historically the identification of Foxp3 Tregs has not allowed for functional studies to be conducted because staining for the Foxp3 transcription factor requires cell permeabilization. A newer surrogate gating strategy to detect CD3+CD4+CD25+CD127low lymphocytes allows for downstream functional assays on the Foxp3 Treg population. Our study aimed to better define the role of Tregs in LCH pathogenesis using this surrogate staining method. Results: A surrogate Treg identification method was employed to gate on CD3+CD4+CD25+CD127low lymphocytes in the blood from healthy donors and patients with LCH and in lesions from patients with LCH. Using this gating strategy we identified similarly to previous studies that the proportion of lesional Tregs (median = 12.85 %, IQR = 7.85-26.72 %, n = 6) was significantly (p < 0.0001) increased in the total T cell population when compared to those in the blood from healthy donors (median = 1.02 %, IQR = 0.84-1.20 %, n = 19). The proportion of Tregs in blood from patients with active LCH (median = 1.73 %, IQR = 1.58-3.80 %, n = 8) was also significantly (p = 0.232) increased when compared to those in the blood from healthy donors. We confirmed Foxp3 expression in Tregs in lesions from three independent LCH donors by staining for the transcription factor, and we confirmed that other lesional CD4+ T cells were mostly negative for Foxp3. Due to our interest in unconventional T cells we analysed specimens for CD56 expression in conjunction with investigating Tregs and we unexpectedly found CD56 expression on a considerable proportion of the Treg population in LCH lesions (median = 36.48 %, IQR = 24.94-55.14 %, n = 6). The proportion of Tregs that displayed CD56 expression on their cell surface was significantly higher in the lesions from patients with LCH compared to the blood from healthy donors (median = 2.29 %, IQR = 0.61-4.10 %, n = 15, p = 0.0092) and patients with active LCH (median = 0.57 %, IQR = 0.11-0.85 %, n = 8, p < 0.0001). Additionally, we found that the proportion of CD56+ Tregs in total T cells from LCH lesions was directly correlated to the proportion of total Tregs in overall lesional T cells (r = 1, p = 0.0028). Importantly, we confirmed Foxp3 expression by both the CD56+ and CD56- Treg populations in lesions from three independent LCH donors. We purified and then stimulated Tregs from healthy donors, and CD56+ and CD56- Treg populations from lesions from patients with LCH. Using supernatants from this assay we found that Tregs from lesions from patients with LCH produced active TGF-β when challenged with PMA and ionomycin for 16 hours (CD56+ Tregs n = 3, CD56- Tregs n = 3). Conclusion: We have confirmed that both CD56+ and CD56- Treg populations from the lesions from patients with LCH are able to produce TGF-β. Given their cytokine potential, the functional status of Tregs in LCH lesions is therefore most likely to be suppressive in nature. This means that Tregs are possibly responsible for a component of the well documented expression of TGF-β within lesions. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Seidu A. Richard ◽  
Zhou Jia-hao

Glioblastoma (GB) is an extremely pugnacious brain cancer originating from neural stem (NS) cell-like cells. Forkhead box G1 (FOXG1; previously recognized as BF-1, qin, Chicken Brain Factor 1, or XBF-1 and renamed FOXG1 for mouse and human, and FoxG1 for other chordates) is an evolutionary preserved transcription factor driven from the forkhead box group of proteins FOXG1 modulates the speed of neurogenesis by maintaining progenitor cells in a proliferative mode as well as obstructing their differentiation into neurons during the initial periods of cortical formation. FOXG1 has been implicated in the formation of central nervous system (CNS) tumors and precisely GBs. Pathophysiologically, joint actions of FOXG1 and phosphatidylinositol- 3-kinases (PI3K) intermediate in intrinsic resistance of human GB cells to transforming growth factor-beta (TGF-β) stimulation of cyclin-dependent kinase inhibitor 1(p21Cip1) as well as growth inhibition. FOXG1 and NOTCH signaling pathways may functionally interrelate at different stages to facilitate gliomagenesis. Furthermore, FoxG1 actively contributed to the formation of transcription suppression complexes with corepressors of the Groucho/transducin-like Enhancer of split (Gro/TLEs). Also, FOXG1 was stimulated by Gro/TLE1 and abridged by Grg6. FOXG1 silencing in brain tumor-initiating cells (BTICs) also resulted in diminished secretion of markers characteristic undifferentiated natural neural stem/progenitor cells (NSPC) states, such as Oligodendrocyte transcription factor (OLIG2), (sex determining region Y)-box 2. (SOX2) and B lymphoma Mo-MLV insertion region 1 homolog (BMI1). This review therefore focuses on the pathogenic and biomarker potentials of FOXG1 in GB.


Sign in / Sign up

Export Citation Format

Share Document