scholarly journals Registered report: COT drives resistance to RAF inhibition through MAP kinase pathway reactivation

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Vidhu Sharma ◽  
Lisa Young ◽  
Miguel Cavadas ◽  
Kate Owen ◽  

The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replications of selected experiments from a number of high-profile papers in the field of cancer biology. The papers, which were published between 2010 and 2012, were selected on the basis of citations and Altmetric scores (<xref ref-type="bibr" rid="bib4">Errington et al., 2014</xref>). This Registered Report describes the proposed replication plan of key experiments from “COT drives resistance to RAF inhibition through MAPK pathway reactivation” by Johannessen and colleagues, published in Nature in 2010 (<xref ref-type="bibr" rid="bib10">Johannessen et al., 2010</xref>). The key experiments to be replicated are those reported in Figures 3B, 3D-E, 3I, and 4E-F. In Figures 3B, D-E, RPMI-7951 and OUMS023 cells were reported to exhibit robust ERK/MEK activity concomitant with reduced growth sensitivity in the presence of the BRAF inhibitor PLX4720. MAP3K8 (COT/TPL2) directly regulated MEK/ERK phosphorylation, as the treatment of RPMI-7951 cells with a MAP3K8 kinase inhibitor resulted in a dose-dependent suppression of MEK/ERK activity (Figure 3I). In contrast, MAP3K8-deficient A375 cells remained sensitive to BRAF inhibition, exhibiting reduced growth and MEK/ERK activity during inhibitor treatment. To determine if RAF and MEK inhibitors together can overcome single-agent resistance, MAP3K8-expressing A375 cells treated with PLX4720 along with MEK inhibitors significantly inhibited both cell viability and ERK activation compared to treatment with PLX4720 alone, as reported in Figures 4E-F. The Reproducibility Project: Cancer Biology is collaboration between the Center for Open Science and Science Exchange and the results of the replications will be published in eLife.

Author(s):  
Ryan Sullivan ◽  
Patricia LoRusso ◽  
Scott Boerner ◽  
Reinhard Dummer

The treatment of melanoma has been revolutionized over the past decade with the development of effective molecular and immune targeted therapies. The great majority of patients with melanoma have mutations in oncogenes that predominantly drive signaling through the mitogen activated protein kinase (MAPK) pathway. Analytic tools have been developed that can effectively stratify patients into molecular subsets based on the identification of mutations in oncogenes and/or tumor suppressor genes that drive the MAPK pathway. At the same time, potent and selective inhibitors of mediators of the MAPK pathway such as RAF, MEK, and ERK have become available. The most dramatic example is the development of single-agent inhibitors of BRAF (vemurafenib, dabrafenib, encorafenib) and MEK (trametinib, cobimetinib, binimetinib) for patients with metastatic BRAFV600-mutant melanoma, a subset that represents 40% to 50% of patients with metastatic melanoma. More recently, the elucidation of mechanisms underlying resistance to single-agent BRAF inhibitor therapy led to a second generation of trials that demonstrated the superiority of BRAF inhibitor/MEK inhibitor combinations (dabrafenib/trametinib; vemurafenib/cobimetinib) compared to single-agent BRAF inhibitors. Moving beyond BRAFV600targeting, a number of other molecular subsets—such as mutations in MEK, NRAS, and non-V600 BRAF and loss of function of the tumor suppressor neurofibromatosis 1 ( NF1)—are predicted to respond to MAPK pathway targeting by single-agent pan-RAF, MEK, or ERK inhibitors. As these strategies are being tested in clinical trials, preclinical and early clinical trial data are now emerging about which combinatorial approaches might be best for these patients.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 3512-3512 ◽  
Author(s):  
A. Patnaik ◽  
A. Ricart ◽  
J. Cooper ◽  
K. Papadopoulos ◽  
M. Beeram ◽  
...  

3512 Background: The combination of S and T is hypothesized to maximize pathway inhibition by concurrently targeting parallel signaling mechanisms and will abrogate potential resistance mechanisms directed towards the MAPK pathway through increased signaling via the survival pathway involving PI3K/Akt. Methods: Eligible patients (pts) were treated with escalating continuous oral doses of S (200 and 400 mg BID) and weekly T IV (15 mg, 25 mg). S began on day 8 of course 1 to permit PK evaluations of T. PD studies in PBMCs were performed serially in pts. Results: To date, 24 evaluable pts have received 85 courses [median 3;range1–12] in the following S/T dose cohorts; cohort 1: 200 mg/15 mg (n=6), cohort 2: 400 mg/15 mg (n=11), cohort 3: 400 mg/25 mg (n=6), and cohort 4: 200 mg/25 mg (n=1). Patients demographics were males/female 11/13, median age 54.5 [range 27–71] and PS of 0/1/2 : n=9/13/2. Dose limiting toxicities (DLT) were grade 3 typhlitis in 1/6 pts in cohort 1, and mucositis in 1/6 pts in cohort 2. Expansion of cohort 2 to 11 patients resulted in 4 additional DLTs (hand foot syndrome (HFS) x 2 pts, thrombycytopenia/rash x 1 pt, creatinine elevation x 1 pt). 3 of 6 pts in cohort 3 experienced DLT (HFS x 2 pts, thrombocytopenia x 1 pt). PK analyses show no evidence of S effect on T kinetics while Css,min values of S are consistent with those reported in single-agent studies (S 200mg BID median Css,min 4.42 μg/mL [SD 3.05], S 400 mg BID median Css,min 5.11 μg/mL [SD 4.35]). Apparent downregulation of 4E-BP1 and activated forms of p70S6 kinase and ERK was observed in some patients following treatment. Partial responses have occurred in NHL (1 pt) and papillary thyroid cancer (1 pt) and prolonged SD (> 12 mo) has been observed in RCC (1 pt). Conclusions: The combination of S and T demonstrate significant mucocutaneous toxicity at full doses of S, however preliminary PK analyses show no evidence of drug-drug interactions. Characterization of an intermediate dose of S 200 mg BID/T 25 mg IV is ongoing. [Table: see text]


2016 ◽  
Vol 34 (4_suppl) ◽  
pp. TPS468-TPS468
Author(s):  
Heloisa P. Soares ◽  
Nishi Kothari ◽  
Amit Mahipal ◽  
Gregory M. Springett ◽  
Jongphil Kim ◽  
...  

TPS468 Background: Currently, there is no standard second line treatment for patients with advanced biliary tract cancer (BC) who have failed prior systemic therapy. Aberrant activation of the Ras/Raf/MEK/ERK pathway occurs in more than 60% of BC indicating the importance of this pathway in biliary carcinogenesis. Furthermore anti-angiogenic agents such as the VEGF-antagonist bevacizumab, and the multikinase inhibitor sorafenib have been tested in BC in the first line setting with modest activity. Regorafenib is an oral multi-kinase inhibitor that targets multiple membrane-bound and intracellular kinases including VEGF, the Ras/Raf/MEK/ERK and PDGFR- ß pathways. Given the pivotal role of these pathways in biliary cancer biology, the clinical evaluation of regorafenib represents a novel and rational approach to treat this disease. Methods: This is a multi-institutional phase II single arm single-stage design trial using regorafenib as single agent. Patients with histologically or cytologically-proven locally advanced or metastatic biliary tract carcinomas that failed no more than 2 prior line of systemic chemotherapy are eligible for this study. Patients must have measurable disease per RECIST 1.1 criteria and never been treated with VEGF inhibitors. Patients will receive regorafenib 160 mg daily (21 days on and 7 days off) and will be evaluated for response every 2 cycles (1cycle = 28 days). The study’s primary endpoint is 6 month overall survival. Secondary endpoints are to define disease control, progression-free survival and toxicity related to treatment. Correlative biomarker studies using plasma samples will be performed to investigate levels of 40 relevant proteins associated with the above-mentioned pathways in the attempt to identify predictive markers of drug benefit. As per September 2015, twelve of the 39 planned patients have been accrued for the study. In addition to Moffitt Cancer Center, this trial will enroll patients at the UNC Lineberger Comprehensive Cancer Center and VCU Massey Cancer Center. Clinical trial information: NCT02115542.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 910-910 ◽  
Author(s):  
Masayasu Hayashi ◽  
Yoshikane Kikushige ◽  
Takuya Harada ◽  
Toshihiro Miyamoto ◽  
Takahiro Maeda ◽  
...  

Acute myeloid leukemia (AML) is one of the most common hematologic malignancies derived from a small number of self-renewing leukemic stem cells (LSCs). AML has various genetic abnormalities such as chromosomal aberration, single nucleotide variant and insertion/deletion. In particular, internal tandem duplication of FMS-like tyrosine kinase 3 (FLT3-ITD) is the most frequently found in ~ 25 % of AML cases, moreover, AML with FLT3-ITD is classified in unfavorable. FLT3 is fundamentally essential for survival of hematopoietic stem cells (HSCs) as well as LSCs, but once ITD is acquired, FLT3-ITD promotes the proliferation of AML by activating downstream enzymes. Various FLT3 inhibitors are now available as effective and promising drugs. On the other hand, the resistance against those inhibitors has been regarded as an emerging problem in clinics. To clarify the molecular machineries how AML cells acquire the resistance against FLT3 inhibitors, we compared the mutation status of paired AML samples consisted of diagnostic and relapsed samples. LSCs, which are quiescent and highly resistant against conventional chemotherapies, are considered to play a central role in recurrence. Since we and other group previously reported that TIM-3 clearly discriminates LSCs from residual normal HSCs, we purified and evaluated the mutations of CD34+CD38-TIM-3+ LSCs or CD34+ immature AML cells. The paired diagnostic and relapsed samples obtained from the identical 5 AML patient treated with Gilteritinib were subjected to whole exome sequencing (WES) analysis. CD3+ T cells were also purified from the diagnostic samples and used as a germ line control to detect somatic mutations acquired in AML cells. Libraries for WES were prepared using Sure Select XT HS and Human All Exon V6 Capture Kit in accordance with manufacturer's instructions. Then we performed WES using NextSeq 500 with 150bp pair-end read. Surprisingly, in all 5 cases examined, AML clones lost FLT3-ITD, whereas clones harboring mutations potentiating RAS-MAPK signaling became dominant at relapse: one case acquired the activated KRAS (Q61H) mutation and the remaining four cases newly acquired the previously-unidentified mutations in RAS-MAPK inhibitory genes. Such mutations in RAS-MAPK-inhibitory genes include DIRAS3 (W173X), RASA1 (E70G), RAP1GAP2 (K18X), RIN2 (S355fs), RASA4 (C655R), RASA4B (E141G), MAP2K7 (T66P) and PTPN7 (T14M). Of note, these genes belong to RAS-MAPK-inhibitory pathways and the encoded proteins are reported to suppress the activity of RAS-MAPK pathways. These RAS-MAPK-inhibitory mutations were exclusively detected in the relapsed AML clones, and contained stop-gain and frameshift mutations. We, therefore, hypothesized that RAS/MAPK activation driven by somatic mutations contributes to the acquisition of resistance against FLT3 inhibitors in LSCs. Consistent with such hypothesis, phosflow analysis revealed that basal ERK phosphorylation was retained or rather increased in the relapse CD34+ AML cells lacking FLT3-ITD, indicating that RAS-MAPK activation was maintained independent of FLT3-ITD. Furthermore, ASP2215 and AC220 inhibited ERK phosphorylation in the diagnostic CD34+ AML cells, whereas both inhibitors failed in the inhibition of ERK activation in the relapsed AML clones in all 3 cases analyzed. Gilteritinib also failed in inhibiting ERK in other relapsed AML cases, however, the combination of ASP2215 and MEK inhibitor efficiently suppressed ERK phosphorylation. All of relapse AML cases exhibited the emergence of AML clones harboring mutations associated with RAS-MAPK pathway genes, and therefore, the clinical sequence for detecting such mutations might be useful to assess the risk of FLT3-inhibitor treatment failure in clinics. Furthermore, our study showed the efficacy of MEK inhibitors to inhibit RAS-MAPK signaling activity even in the relapsed AML cells. Thus, the combination therapy consisted of FLT3-inhibitors and MEK inhibitors might be one of the promising therapeutic strategies to overcome FLT3-inhibitor resistance in AML. In summary, our study revealed that mutations potentiating RAS-MAPK pathway should play a central role in conferring the resistance against FLT3-inhibitors to AML. Disclosures Akashi: Sumitomo Dainippon, Kyowa Kirin: Consultancy; Celgene, Kyowa Kirin, Astellas, Shionogi, Asahi Kasei, Chugai, Bristol-Myers Squibb: Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 481-481
Author(s):  
Benjamin Heath Durham ◽  
Eli L. Diamond ◽  
Julien Haroche ◽  
Zhan Yao ◽  
Jing Ma ◽  
...  

Abstract Histiocytic neoplasms are clonal, hematopoietic disorders characterized by an accumulation of abnormal monocyte-derived dendritic cells or macrophages in Langerhans Cell (LCH) and non-Langerhans (non-LCH) histiocytoses, respectively. The discovery of the BRAF V600E mutation in ~50% of patients with LCH and the non-LCH Erdheim-Chester Disease (ECD) provided the first molecular target in these patients and novel insights into the pathogenesis of these disorders. However, recurrent mutations in the majority of the ~50% of BRAF V600E-wild type patients with non-LCH are unknown. Moreover, recurrent mutations outside of the MAP kinase pathway are undefined throughout histiocytic neoplasms. To address these issues, we performed whole exome sequencing (WES) of frozen biopsies from 24 patients with LCH (n=10) or ECD (n=14) paired with peripheral blood mononuclear cells. 13/24 patients also underwent RNA sequencing (RNA-seq). All mutations in activating kinases were validated by droplet-digital PCR, while targeted-capture next-generation sequencing validated all others. Both adult (n=18; n=2 with LCH) and pediatric cases (n=9; n=8 with LCH) were included. Using combined WES/RNA-seq, activating kinase alterations were identified in 100% of patients. In LCH, 60% and 40% had BRAF V600E and MAP2K1 mutations, respectively. In non-LCH 51%, 14%, 14%, and 7% were BRAFV600E, ARAF, MAP2K1, and NRAS mutant (Fig1A). Overall, a mean of 7 non-synonymous mutations per adult patient was identified (range 1-22) compared with 5 mutations per pediatric patient (range 4-9; p =ns). Mutations affecting diverse cellular processes were found to co-exist with kinase mutations including mutations in epigenetic modifiers and the p38/MAPK pathway. In addition to kinase point mutations, RNA-seq identified recurrent, in-frame kinase fusions-a first for these disorders. All identified fusions were validated using FISH and RT-PCR. This includes novel fusions in BRAF (RNF11-BRAF and CLIP2-BRAF), as well as therapeutically important fusions in ALK (2 separate KIF5B-ALK fusions) and NTRK1 (LMNA-NTRK1;Fig1B). Expression of each fusion in Ba/F3 cells conferred cytokine-independent growth. Importantly, the BRAF fusions were found to be sensitive to MEK inhibition but resistant to vemurafenib while the ALK fusions conferred sensitivity to the ALK inhibitors crizotinib or alectinib. We next interrogated a validation cohort of 37 BRAF V600E-wild type, non-LCH, formalin-fixed, paraffin-embedded tissue samples using targeted mutational profiling for MAP2K1, ARAF, NRAS, KRAS, and PIK3CA. This revealed activating mutations in MAP2K1 (32%; n=12), NRAS (16%; n=6), KRAS (11%; n=4), PIK3CA (8%; n=3), and ARAF (3%; n=1). Three of the investigated non-LCH patients with refractory disease and progressive organ dysfunction were treated with targeted therapies based on the discovery of novel kinase alterations described above. Treatment of 2 refractory MAP2K1- mutant, non-LCH patients with MEK inhibitors (trametinib or cobimetinib) resulted in dramatic clinical improvement (Fig1C). Both patients have been maintained on MEK inhibitor single-agent therapy with a sustained clinical response for >100 days. Further evidence of effective targeted inhibition was found in a refractory ECD patient carrying an ARAF S214A mutation. This patient failed to respond to 3 lines of prior therapies and suffered near blindness due to disease infiltration in the retina and optic nerves. Given a recent report of complete response to sorafenib in a lung cancer patient with an ARAF S214C mutation, we initiated sorafenib. Within 12 weeks, there was improvement in the patientÕs eyesight and decreased infiltrative disease, coinciding with >50% decrease in mutant ARAF DNA in plasma cell-free DNA. Whole exome and transcriptome sequencing identified activating kinase mutations or translocations in all patients with the common downstream effect of activating the MAPK pathway. The preliminary, dramatic, clinical efficacy observed with use of MEK and RAF inhibitors in MAP2K1 - and ARAF-mutated, non-LCH patients further supports the central role of targeting the MAPK pathway in these tumors. The discovery of the discussed mutations and fusions in diverse kinases provides critical new insights into the genetic events central to a spectrum of adult and pediatric histiocytic neoplasms. Figure 1. Figure 1. Disclosures Off Label Use: This abstract describes use of MEK inhibitors (both tremetinib and cobimetinib) as well as sorafenib for MEK1 and ARAF mutant histiocytosis. . Stephens:Foundation Medicine, Inc.: Employment, Equity Ownership. Miller:Foundation Medicine, Inc.: Employment, Equity Ownership. Ross:Foundation Medicine Inc.: Employment. Ali:Foundation Medicine Inc.: Employment. Hyman:Chugai Pharma: Consultancy; Biotherapeutics: Consultancy; Atara: Consultancy, Honoraria.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii414-iii414
Author(s):  
Daniel Muldoon ◽  
Guisheng Zhao ◽  
Carly Batt ◽  
Mallika Singh ◽  
Theodore Nicolaides

Abstract INTRODUCTION Activation of the RAS-MAPK signaling cascade is common in pediatric gliomas. Based on the role of SHP2 in RAS pathway signaling, we hypothesized that NF1-deficient pediatric glioma models would respond to SHP2 inhibitor monotherapy whereas BRAF-V600E gliomas would not. However, we postulated that the latter would exhibit increased sensitivity to a BRAF inhibitor (BRAFi) in combination with SHP2i. Here we demonstrate that the SHP2 inhibitors SHP099 and RMC-4550 (SHP2i) show significant single-agent activity in vitro against NF1-deficient glioma cells and that the combination of RMC-4550 with BRAFi shows increased activity in BRAF-V600E glioma cells relative to the single-agents. METHODS Using a panel of NF1 mutant/deficient and BRAF-V600E mutant glioma cell lines we examined effects on cell viability and protein expression levels of total and phosphorylated MEK, ERK, and AKT. RESULTS LN229 and U87 NF1-deficient glioma cells are sensitive to SHP2i alone but not A375 cells (melanoma, BRAF-V600E). Additionally, we show that in multiple BRAF-V600E glioma cell lines BRAFi sensitivity increases when combined with a SHP2i. Immunoblots show decreased expression of pERK and pMEK in LN229 cells following SHP2i exposure, while A375 cells maintain MAPK pathway signaling. A sustained decrease in the expression of pERK after 24 hours was observed in BRAF-V600E glioma cells with BRAFi in combination with SHP2i, consistent with relief of feedback inhibition. In vivo studies using orthotopic xenograft models are underway. CONCLUSION SHP2i shows preclinical activity in vitro against NF1-deficient pediatric glioma cell lines as a single-agent and against BRAF-V600E gliomas in combination with BRAFi.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Ajay Bhargava ◽  
Steven Pelech ◽  
Ben Woodard ◽  
John Kerwin ◽  
Nimet Maherali ◽  
...  

The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replications of selected experiments from a number of high-profile papers in the field of cancer biology. The papers, which were published between 2010 and 2012, were selected on the basis of citations and Altmetric scores (<xref ref-type="bibr" rid="bib2">Errington et al., 2014</xref>). This Registered Report describes the proposed replication plan of key experiments from 'RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth' by Hatzivassiliou and colleagues, published in Nature in 2010 (<xref ref-type="bibr" rid="bib7">Hatzivassiliou et al., 2010</xref>). Hatzivassiliou and colleagues examined the paradoxical response of RAF-WT tumors to treatment with RAF inhibitors. The key experiments being replicated include Figure 1A, in which the original authors demonstrated that treatment of a subset of BRAFWT tumor cell lines with RAF small molecule inhibitors resulted in an increase in cell viability, Figure 2B, which reported that RAF inhibitor activation of the MAPK pathway was dependent on CRAF but not BRAF, and Figure 4A, where the dimerization of BRAF and CRAF was modulated by the RAF inhibitor PLX4720, but not GDC-0879. The Reproducibility Project: Cancer Biology is a collaboration between the Center for Open Science and Science Exchange, and the results of the replications will be published by eLife.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. e13529-e13529 ◽  
Author(s):  
Elizabeth Grace Carideo Cunniff ◽  
Julie Zhang ◽  
Jouhara Chouitar ◽  
Jerome Mettetal ◽  
Kazuhide Nakamura ◽  
...  

e13529 Background: RAS mutant melanoma and colorectal cancer represent areas of significant unmet medical need. MLN2480 is an investigational class II RAF kinase inhibitor and TAK-733 is an investigational allosteric MEK kinase inhibitor; each of which is the subject of a single agent phase I clinical trial. The present studies have characterized the combination activity of these agents in BRAF mutant and RAS mutant preclinical models of melanoma and colorectal cancer. Methods: Combination effects of MLN2480 and TAK-733 on cell viability were studied using an ATP-based cell viability assay across a panel of BRAF and RAS mutant melanoma and CRC cell lines. Western blot analysis was used to compare effects on MAPK pathway signaling and response markers in cell lines showing a range of sensitivity to this combination. Pharmacodynamic responses and growth inhibitory effects of the combination were studied in xenografts of the same cell lines, as well as in primary human tumor xenografts, of RAS mutant melanoma and CRC. Results: MLN2480 inhibits MAPK pathway signaling in BRAF mutant and some RAS mutant preclinical cancer models at concentrations that are tolerated in vivo. MLN2480 is most potent in BRAF mutant melanoma models but also has single agent activity in some RAS mutant models. The combination of MLN2480 with TAK-733 inhibits the growth of a broader range of RAS mutant tumor models than single agent MLN2480, including primary human tumor xenograft models of melanoma and CRC. In vitroanalysis of this drug combination in cell proliferation assays demonstrates synergistic activity. Western blot analysis demonstrated the effect of MLN2480 in reversing feedback activation of MEK in response to TAK-733, leading to more concerted MAPK pathway inhibition. Conclusions: The activity of the RAF kinase inhibitor MLN2480 in preclinical models of BRAF and RAS mutant melanoma and CRC provides a rationale for clinical testing. The combination of MLN2480 with the MEK inhibitor TAK-733 represents an additional strategy for clinical research within these tumor types.


2020 ◽  
Author(s):  
Sara Akhavanfard ◽  
Lamis Yehia ◽  
Roshan Padmanabhan ◽  
Jordan P Reynolds ◽  
Ying Ni ◽  
...  

Abstract Adrenocortical Carcinoma (ACC) is a rare endocrine tumor with poor overall prognosis and 1.5-fold overrepresentation in females. In children, ACC is associated with inherited cancer syndromes with 50–80% of childhood-ACC associated with TP53 germline variants. ACC in adolescents and young adults (AYA) is rarely due to germline TP53, IGF2, PRKAR1A and MEN1 variants. We analyzed exome sequencing data from 21 children (&lt;15y), 32 AYA (15-39y), and 60 adults (&gt;39y) with ACC, and retained all pathogenic, likely pathogenic, and highly prioritized variants of uncertain significance. We engineered a stable lentiviral-mutant ACC cell line, harboring an EGFR variant (p.Asp1080Asn) from a 21-year-old female without germline-TP53-variant and with aggressive ACC. We found that 4.8% of the children (P = 0.004) and 6.2% of AYA (P &lt; 0.0001), all-female participants, harbored germline EGFR variants, compared to only 0.3% of the control group. Expanding our analysis to the RTK-RAS-MAPK pathway, we found that the RTK genes have the highest number of highly prioritized germline variants in these individuals amongst all three arms of this pathway. We showed EGFR mutant cells migrate faster and are characterized by a stem-like phenotype compared to wild type cells. While EGFR inhibitors did not affect the stemness of mutant cells, Sunitinib, a multireceptor tyrosine kinase inhibitor, significantly reduced their stem-like behavior. Our data suggest that EGFR could be a novel underlying germline predisposition factor for ACC, especially in the Childhood-AYA (C-AYA) population. Further clinical validation can improve precision oncology management of this disease, which is known to have limited therapeutic options.


Sign in / Sign up

Export Citation Format

Share Document