scholarly journals Targeting senescent cells enhances adipogenesis and metabolic function in old age

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Ming Xu ◽  
Allyson K Palmer ◽  
Husheng Ding ◽  
Megan M Weivoda ◽  
Tamar Pirtskhalava ◽  
...  

Senescent cells accumulate in fat with aging. We previously found genetic clearance of senescent cells from progeroid INK-ATTAC mice prevents lipodystrophy. Here we show that primary human senescent fat progenitors secrete activin A and directly inhibit adipogenesis in non-senescent progenitors. Blocking activin A partially restored lipid accumulation and expression of key adipogenic markers in differentiating progenitors exposed to senescent cells. Mouse fat tissue activin A increased with aging. Clearing senescent cells from 18-month-old naturally-aged INK-ATTAC mice reduced circulating activin A, blunted fat loss, and enhanced adipogenic transcription factor expression within 3 weeks. JAK inhibitor suppressed senescent cell activin A production and blunted senescent cell-mediated inhibition of adipogenesis. Eight weeks-treatment with ruxolitinib, an FDA-approved JAK1/2 inhibitor, reduced circulating activin A, preserved fat mass, reduced lipotoxicity, and increased insulin sensitivity in 22-month-old mice. Our study indicates targeting senescent cells or their products may alleviate age-related dysfunction of progenitors, adipose tissue, and metabolism.

2005 ◽  
Vol 288 (1) ◽  
pp. E267-E277 ◽  
Author(s):  
Tamara Tchkonia ◽  
Yourka D. Tchoukalova ◽  
Nino Giorgadze ◽  
Tamar Pirtskhalava ◽  
Iordanes Karagiannides ◽  
...  

Fat depots vary in function and size. The preadipocytes that fat cells develop from exhibit distinct regional characteristics that persist in culture. Human abdominal subcutaneous cultured preadipocytes undergo more extensive lipid accumulation, higher adipogenic transcription factor expression, and less TNF-α-induced apoptosis than omental preadipocytes. We found higher replicative potential in subcutaneous and mesenteric than in omental preadipocytes. In studies of colonies arising from single preadipocytes, two preadipocyte subtypes were found, one capable of more extensive replication, differentiation, and adipogenic transcription factor expression and less apoptosis in response to TNF-α than the other. The former was more abundant in subcutaneous and mesenteric than in omental preadipocyte populations, potentially contributing to regional variation in replication, differentiation, and apoptosis. Both subtypes were found in strains derived from single human preadipocytes stably expressing telomerase, confirming that both subtypes are of preadipocyte lineage. After subcloning of cells of either subtype, both subtypes were found, indicating that switching can occur between subtypes. Thus proportions of preadipocyte subtypes with distinct cell-dynamic properties vary among depots, potentially permitting tissue plasticity through subtype selection during development. Furthermore, mesenteric preadipocyte cell-dynamic characteristics are distinct from omental cells, indicating that visceral fat depots are not functionally uniform.


Biology ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 485
Author(s):  
Lorenzo Cuollo ◽  
Fabrizio Antonangeli ◽  
Angela Santoni ◽  
Alessandra Soriani

Cellular senescence represents a robust tumor-protecting mechanism that halts the proliferation of stressed or premalignant cells. However, this state of stable proliferative arrest is accompanied by the Senescence-Associated Secretory Phenotype (SASP), which entails the copious secretion of proinflammatory signals in the tissue microenvironment and contributes to age-related conditions, including, paradoxically, cancer. Novel therapeutic strategies aim at eliminating senescent cells with the use of senolytics or abolishing the SASP without killing the senescent cell with the use of the so-called “senomorphics”. In addition, recent works demonstrate the possibility of modifying the composition of the secretome by genetic or pharmacological intervention. The purpose is not to renounce the potent immunostimulatory nature of SASP, but rather learning to modulate it for combating cancer and other age-related diseases. This review describes the main molecular mechanisms regulating the SASP and reports the evidence of the feasibility of abrogating or modulating the SASP, discussing the possible implications of both strategies.


2021 ◽  
Vol 7 (21) ◽  
pp. eabe4601
Author(s):  
Sandro Da Mesquita ◽  
Jasmin Herz ◽  
Morgan Wall ◽  
Taitea Dykstra ◽  
Kalil Alves de Lima ◽  
...  

Aging leads to a progressive deterioration of meningeal lymphatics and peripheral immunity, which may accelerate cognitive decline. We hypothesized that an age-related reduction in C-C chemokine receptor type 7 (CCR7)–dependent egress of immune cells through the lymphatic vasculature mediates some aspects of brain aging and potentially exacerbates cognitive decline and Alzheimer’s disease–like brain β-amyloid (Aβ) pathology. We report a reduction in CCR7 expression by meningeal T cells in old mice that is linked to increased effector and regulatory T cells. Hematopoietic CCR7 deficiency mimicked the aging-associated changes in meningeal T cells and led to reduced glymphatic influx and cognitive impairment. Deletion of CCR7 in 5xFAD transgenic mice resulted in deleterious neurovascular and microglial activation, along with increased Aβ deposition in the brain. Treating old mice with anti-CD25 antibodies alleviated the exacerbated meningeal regulatory T cell response and improved cognitive function, highlighting the therapeutic potential of modulating meningeal immunity to fine-tune brain function in aging and in neurodegenerative diseases.


2008 ◽  
Vol 294 (4) ◽  
pp. H1562-H1570 ◽  
Author(s):  
Hélène Bulckaen ◽  
Gaétan Prévost ◽  
Eric Boulanger ◽  
Géraldine Robitaille ◽  
Valérie Roquet ◽  
...  

The age-related impairment of endothelium-dependent vasodilatation contributes to increased cardiovascular risk in the elderly. For primary and secondary prevention, aspirin can reduce the incidence of cardiovascular events in this patient population. The present work evaluated the effect of low-dose aspirin on age-related endothelial dysfunction in C57B/J6 aging mice and investigated its protective antioxidative effect. Age-related endothelial dysfunction was assessed by the response to acetylcholine of phenylephrine-induced precontracted aortic segments isolated from 12-, 36-, 60-, and 84-wk-old mice. The effect of low-dose aspirin was examined in mice presenting a decrease in endothelial-dependent relaxation (EDR). The effects of age and aspirin treatment on structural changes were determined in mouse aortic sections. The effect of aspirin on the oxidative stress markers malondialdehyde and 8-hydroxy-2′-deoxyguanosine (8-OhdG) was also quantified. Compared with that of 12-wk-old mice, the EDR was significantly reduced in 60- and 84-wk-old mice ( P < 0.05); 68-wk-old mice treated with aspirin displayed a higher EDR compared with control mice of the same age (83.9 ± 4 vs. 66.3 ± 5%; P < 0.05). Aspirin treatment decreased 8-OHdG levels ( P < 0.05), but no significant effect on intima/media thickness ratio was observed. The protective effect of aspirin was not observed when treatment was initiated in older mice (96 wk of age). It was found that low-dose aspirin is able to prevent age-related endothelial dysfunction in aging mice. However, the absence of this effect in the older age groups demonstrates that treatment should be initiated early on. The underlying mechanism may involve the protective effect of aspirin against oxidative stress.


2015 ◽  
Vol 28 (1) ◽  
pp. 181-201 ◽  
Author(s):  
Naohiko Ohama ◽  
Kazuya Kusakabe ◽  
Junya Mizoi ◽  
Huimei Zhao ◽  
Satoshi Kidokoro ◽  
...  

Allergy ◽  
2007 ◽  
Vol 62 (12) ◽  
pp. 1429-1438 ◽  
Author(s):  
J. A. Cornejo-Garcia ◽  
T. D. Fernandez ◽  
M. J. Torres ◽  
M. Carballo ◽  
I. Hernan ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marie K. Lagerquist ◽  
Karin L. Gustafsson ◽  
Petra Henning ◽  
Helen Farman ◽  
Jianyao Wu ◽  
...  

AbstractObesity has previously been thought to protect bone since high body weight and body mass index are associated with high bone mass. However, some more recent studies suggest that increased adiposity negatively impacts bone mass. Here, we aimed to test whether acute loss of adipose tissue, via adipocyte apoptosis, alters bone mass in age-related obese mice. Adipocyte apoptosis was induced in obese male FAT-ATTAC mice through AP20187 dimerizer-mediated activation of caspase 8 selectively in adipocytes. In a short-term experiment, dimerizer was administered to 5.5 month-old mice that were terminated 2 weeks later. At termination, the total fat mass weighed 58% less in dimerizer-treated mice compared with vehicle-treated controls, but bone mass did not differ. To allow for the detection of long-term effects, we used 9-month-old mice that were terminated six weeks after dimerizer administration. In this experiment, the total fat mass weighed less (− 68%) in the dimerizer-treated mice than in the controls, yet neither bone mass nor biomechanical properties differed between groups. Our findings show that adipose tissue loss, despite the reduced mechanical loading, does not affect bone in age-related obese mice. Future studies are needed to test whether adipose tissue loss is beneficial during more severe obesity.


Sign in / Sign up

Export Citation Format

Share Document