scholarly journals The tumor microenvironment as a metabolic barrier to effector T cells and immunotherapy

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Aaron R Lim ◽  
W Kimryn Rathmell ◽  
Jeffrey C Rathmell

Breakthroughs in anti-tumor immunity have led to unprecedented advances in immunotherapy, yet it is now clear that the tumor microenvironment (TME) restrains immunity. T cells must substantially increase nutrient uptake to mount a proper immune response and failure to obtain sufficient nutrients or engage the appropriate metabolic pathways can alter or prevent effector T cell differentiation and function. The TME, however, can be metabolically hostile due to insufficient vascular exchange and cancer cell metabolism that leads to hypoxia, depletion of nutrients, and accumulation of waste products. Further, inhibitory receptors present in the TME can inhibit T cell metabolism and alter T cell signaling both directly and through release of extracellular vesicles such as exosomes. This review will discuss the metabolic changes that drive T cells into different stages of their development and how the TME imposes barriers to the metabolism and activity of tumor infiltrating lymphocytes.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A538-A538
Author(s):  
Sean Judge ◽  
Morgan Darrow ◽  
Steven Thorpe ◽  
Alicia Gingrich ◽  
Edmond O’Donnell ◽  
...  

BackgroundAlthough the presence and activity of tumor infiltrating lymphocytes (TILs) have been shown to be important factors for survival and response to immunotherapy for multiple cancer types, the benefits of immunotherapy in soft tissue sarcomas (STS) have been limited, and novel approaches are needed. In this study, we sought to characterize the phenotype and function of tumor infiltrating natural killer (NK) and T cells in STS patients and to evaluate clinically relevant strategies to augment TIL function.MethodsUsing both prospectively collected blood and tumor tissue from STS patients undergoing surgical resection (n = 21) and archived specimens (n = 45), we performed flow cytometry and immunohistochemistry to evaluate the extent of peripheral and intratumoral CD3-CD56+ NK and CD8+ T cell phenotype and function as predictors of outcome. We also analyzed TCGA data and the peripheral blood of dogs with spontaneous osteosarcoma receiving inhaled IL-15 on a clinical trial to evaluate the association of CD3-NKp46+ NK and CD8+ T cell activation as well as TIGIT upregulation with outcome. Finally, we stimulated patient PBMCs and TILs ex vivo with IL-15 and a novel human anti-TIGIT antibody to assess the impact of combination therapy on NK and T cell phenotype and function. Parametric and non-parametric statistical tests were used where appropriate. Univariate and multivariate survival analyses were performed by Cox proportional hazards models.ResultsCompared to peripheral expression, intratumoral NK and T cells showed an activated and exhausted phenotype by CD69 and TIGIT, respectively. Ex vivo TIL stimulation with IL-15 further increased markers of activation and function including CD69, Ki67, IFNg, and granzyme B, while increasing expression of exhaustion marker TIGIT. Analysis of a retrospective STS cohort and TCGA STS gene expression confirmed the association of TILs with improved prognosis. Dogs with metastatic osteosarcoma receiving inhaled IL-15 exhibited upregulation of activation markers and TIGIT. In vitro, IL-15 and TIGIT blockade of both peripheral and intratumoral NK cells increased cytotoxicity against sarcoma cell lines and increased expression of degranulation marker CD107a compared to IL-15 alone.ConclusionsTILs are associated with improved survival in STS, and tumor infiltrating NK and T cells show features of both increased activation and increased exhaustion. Tumor-infiltrating NK and T cells respond to IL-15 stimulation, but simultaneously further upregulate TIGIT with the combination of IL-15 and TIGIT blockade showing greatest cytotoxic effects. Overall, our data suggest that the combination of IL-15 and TIGIT blockade is a promising clinical strategy in STS.Ethics ApprovalAll experiments involving human and canine patients were approved by the respective Institutional Review Boards at the University of California, Davis, Schools of Medicine (Protocol #218204-9) and Veterinary Medicine (IACUC #20179).


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A822-A822
Author(s):  
Sri Krishna ◽  
Frank Lowery ◽  
Amy Copeland ◽  
Stephanie Goff ◽  
Grégoire Altan-Bonnet ◽  
...  

BackgroundAdoptive T cell therapy (ACT) utilizing ex vivo-expanded autologous tumor infiltrating lymphocytes (TILs) can result in complete regression of human cancers.1 Successful immunotherapy is influenced by several tumor-intrinsic factors.2 3 Recently, T cell-intrinsic factors have been associated with immunotherapy response in murine and human studies.4 5 Analyses of tumor-reactive TILs have concluded that anti-tumor neoantigen-specific TILs are enriched in subsets defined by the expression of PD-1 or CD39.6 7 Thus, there is a lack of consensus regarding the tumor-reactive TIL subset that is directly responsible for successful immunotherapies such as ICB and ACT. In this study, we attempted to define the fitness landscape of TIL-enriched infusion products to specifically understand its phenotypic impact on human immunotherapy responses.MethodsWe compared the phenotypic differences that could distinguish bulk ACT infusion products (I.P.) administered to patients who had complete response to therapy (complete responders, CRs, N = 24) from those whose disease progressed following ACT (non-responders, NRs, N = 30) by high dimensional single cell protein and RNA analysis of the I.P. We further analyzed the phenotypic states of anti-tumor neoantigen specific TILs from patient I.P (N = 26) by flow cytometry and single cell transcriptomics.ResultsWe identified two CD8+ TIL populations associated with clinical outcomes: a memory-progenitor CD39-negative stem-like TIL (CD39-CD69-) in the I.P. associated with complete cancer regression (overall survival, P < 0.0001, HR = 0.217, 95% CI 0.101 to 0.463) and TIL persistence, and a terminally differentiated CD39-positive TIL (CD39+CD69+) population associated with poor TIL persistence post-treatment. Although the majority (>65%) of neoantigen-reactive TILs in both responders and non-responders to ACT were found in the differentiated CD39+ state, CR infusion products also contained a pool of CD39- stem-like neoantigen-specific TILs (median = 8.8%) that was lacking in NR infusion products (median = 23.6%, P = 1.86 x 10-5). Tumor-reactive stem-like T cells were capable of self-renewal, expansion, and persistence, and mediated superior anti-tumor response in vivo.ConclusionsOur results support the hypothesis that responders to ACT received infusion products containing a pool of stem-like neoantigen-specific TILs that are able to undergo prolific expansion, give rise to differentiated subsets, and mediate long-term tumor control and T cell persistence, in line with recent murine ICB studies mediated by TCF+ progenitor T cells.4 5 Our data also suggest that TIL subsets mediating ACT-response (stem-like CD39-) might be distinct from TIL subsets enriched for anti-tumor-reactivity (terminally differentiated CD39+) in human TIL.6 7AcknowledgementsWe thank Don White for curating the melanoma patient cohort, and J. Panopoulos (Flowjo) for helpful discussions on high-dimensional analysis, and NCI Surgery Branch members for helpful insights and suggestions. S. Krishna acknowledges funding support from NCI Director’s Innovation Award from the National Cancer Institute.Trial RegistrationNAEthics ApprovalThe study was approved by NCI’s IRB ethics board.ReferencesGoff SL, et al. Randomized, prospective evaluation comparing intensity of lymphodepletion before adoptive transfer of tumor-infiltrating lymphocytes for patients with metastatic melanoma. J Clin Oncol 2016;34:2389–2397.Snyder A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 2014;371:2189–2199.McGranahan N, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 2016;351:1463–1469.Sade-Feldman M, et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 2019;176:404.Miller BC, et al. Subsets of exhausted CD8 T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol 2019;20:326–336.Simoni Y, et al. Bystander CD8 T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 2018;557:575–579.Gros A, et al. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J Clin Invest 2014;124:2246–2259.


Author(s):  
Kosuke Sasaki ◽  
Shigetsugu Takano ◽  
Satoshi Tomizawa ◽  
Yoji Miyahara ◽  
Katsunori Furukawa ◽  
...  

Abstract Background Recent studies indicate that complement plays pivotal roles in promoting or suppressing cancer progression. We have previously identified C4b-binding protein α-chain (C4BPA) as a serum biomarker for the early detection of pancreatic ductal adenocarcinoma (PDAC). However, its mechanism of action remains unclear. Here, we elucidated the functional roles of C4BPA in PDAC cells and the tumor microenvironment. Methods We assessed stromal C4BPA, the C4BPA binding partner CD40, and the number of CD8+ tumor-infiltrating lymphocytes in resected human PDAC tissues via immunohistochemical staining. The biological functions of C4BPA were investigated in peripheral blood mononuclear cells (PBMCs) and human PDAC cell lines. Mouse C4BPA (mC4BPA) peptide, which is composed of 30 amino acids from the C-terminus and binds to CD40, was designed for further in vitro and in vivo experiments. In a preclinical experiment, we assessed the efficacy of gemcitabine plus nab-paclitaxel (GnP), dual immune checkpoint blockades (ICBs), and mC4BPA peptide in a mouse orthotopic transplantation model. Results Immunohistochemical analysis revealed that high stromal C4BPA and CD40 was associated with favorable PDAC prognosis (P=0.0005). Stromal C4BPA strongly correlated with the number of CD8+ tumor-infiltrating lymphocytes (P=0.001). In in vitro experiments, flow cytometry revealed that recombinant human C4BPA (rhC4BPA) stimulation increased CD4+ and CD8+ T cell numbers in PBMCs. rhC4BPA also promoted the proliferation of CD40-expressing PDAC cells. By contrast, combined treatment with gemcitabine and rhC4BPA increased PDAC cell apoptosis rate. mC4BPA peptide increased the number of murine T lymphocytes in vitro and the number of CD8+ tumor-infiltrating lymphocytes surrounding PDAC tumors in vivo. In a preclinical study, GnP/ICBs/mC4BPA peptide treatment, but not GnP treatment, led to the accumulation of a greater number of CD8+ T cells in the periphery of PDAC tumors and to greater tumor regression than did control treatment. Conclusions These findings demonstrate that the combination of GnP therapy with C4BPA inhibits PDAC progression by promoting antitumor T cell accumulation in the tumor microenvironment.


Author(s):  
H. Kuroda ◽  
T. Jamiyan ◽  
R. Yamaguchi ◽  
A. Kakumoto ◽  
A. Abe ◽  
...  

Abstract Purpose Immune cells such as cytotoxic T cells, helper T cells, B cells or tumor-associated macrophages (TAMs) contribute to the anti-tumor response or pro-tumorigenic effect in triple negative breast cancer (TNBC). The interrelation of TAMs, T and B tumor-infiltrating lymphocytes (TILs) in TNBC has not been fully elucidated. Methods We evaluated the association of tumor-associated macrophages, T and B TILs in TNBC. Results TNBCs with a high CD68+, CD163+ TAMs and low CD4+, CD8+, CD20+ TILs had a significantly shorter relapse-free survival (RFS) and overall survival (OS) than those with low CD68+, CD163+ TAMs and high CD4+, CD8+, CD20+ TILs. TNBCs with high CD68+ TAMs/low CD8+ TILs showed a significantly shorter RFS and OS and a significantly poorer prognosis than those with high CD68+ TAMs/high CD8+ TILs, low CD68+ TAMs/high CD8+ TILs, and low CD68+/low CD8+. TNBCs with high CD163+ TAMs/low CD8+, low CD20 + TILs showed a significantly shorter RFS and OS and a significantly poorer prognosis than those with high CD163+ TAMs/high CD8+ TILs and high CD163+ TAMs /high CD20+ TILs. Conclusions Our study suggests that TAMs further create an optimal tumor microenvironment (TME) for growth and invasion of cancer cells when evasion of immunoreactions due to T and B TILs occurs. In TNBCs, all these events combine to affect prognosis. The process of TME is highly complex in TNBCs and for an improved understanding, larger validation studies are necessary to confirm these findings.


Author(s):  
Zhongping Yin ◽  
Ling Bai ◽  
Wei Li ◽  
Tanlun Zeng ◽  
Huimin Tian ◽  
...  

Abstract T cells play important roles in anti-tumor immunity. Emerging evidence has revealed that distinct metabolic changes impact the activation and differentiation of T cells. Tailoring immune responses by manipulating cellular metabolic pathways and the identification of new targets may provide new options for cancer immunotherapy. In this review, we focus on recent advances in the metabolic reprogramming of different subtypes of T cells and T cell functions. We summarize how metabolic pathways accurately regulate T cell development, differentiation, and function in the tumor microenvironment. Because of the similar metabolism in activated T cells and tumor cells, we also describe the effect of the tumor microenvironment on T cell metabolism reprogramming, which may provide strategies for maximal anti-cancer effects and enhancing the immunity of T cells. Thus, studies of T lymphocyte metabolism can not only facilitate the basic research of immune metabolism, but also provide potential targets for drug development and new strategies for clinical treatment of cancer.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3344
Author(s):  
Aishwarya Gokuldass ◽  
Arianna Draghi ◽  
Krisztian Papp ◽  
Troels Holz Borch ◽  
Morten Nielsen ◽  
...  

Background: Human intratumoral T cell infiltrates can be defined by quantitative or qualitative features, such as their ability to recognize autologous tumor antigens. In this study, we reproduced the tumor-T cell interactions of individual patients to determine and compared the qualitative characteristics of intratumoral T cell infiltrates across multiple tumor types. Methods: We employed 187 pairs of unselected tumor-infiltrating lymphocytes (TILs) and autologous tumor cells from patients with melanoma, renal-, ovarian-cancer or sarcoma, and single-cell RNA sequencing data from a pooled cohort of 93 patients with melanoma or epithelial cancers. Measures of TIL quality including the proportion of tumor-reactive CD8+ and CD4+ TILs, and TIL response polyfunctionality were determined. Results: Tumor-specific CD8+ and CD4+ TIL responses were detected in over half of the patients in vitro, and greater CD8+ TIL responses were observed in melanoma, regardless of previous anti-PD-1 treatment, compared to renal cancer, ovarian cancer and sarcoma. The proportion of tumor-reactive CD4+ TILs was on average lower and the differences less pronounced across tumor types. Overall, the proportion of tumor-reactive TILs in vitro was remarkably low, implying a high fraction of TILs to be bystanders, and highly variable within the same tumor type. In situ analyses, based on eight single-cell RNA-sequencing datasets encompassing melanoma and five epithelial cancers types, corroborated the results obtained in vitro. Strikingly, no strong correlation between the proportion of CD8+ and CD4+ tumor-reactive TILs was detected, suggesting the accumulation of these responses in the tumor microenvironment to follow non-overlapping biological pathways. Additionally, no strong correlation between TIL responses and tumor mutational burden (TMB) in melanoma was observed, indicating that TMB was not a major driving force of response. No substantial differences in polyfunctionality across tumor types were observed. Conclusions: These analyses shed light on the functional features defining the quality of TIL infiltrates in cancer. A significant proportion of TILs across tumor types, especially non-melanoma, are bystander T cells. These results highlight the need to develop strategies focused on the tumor-reactive TIL subpopulation.


Author(s):  
Diego Salas-Benito ◽  
Enrique Conde ◽  
Ibon Tamayo-Uria ◽  
Uxua Mancheño ◽  
Edurne Elizalde ◽  
...  

Abstract Background: Adoptive immunotherapy with tumor-infiltrating lymphocytes (TIL) may benefit from the use of selective markers, such as programmed cell death protein 1 (PD-1), for tumor-specific T-cell enrichment, as well as predictive biomarkers that help identify those patients capable of rendering tumor-reactive TIL products. We have investigated this in ovarian cancer (OC) patients as candidate for TIL therapy implementation. Methods: PD-1- and PD-1+ CD8 TILs were isolated from resected ovarian tumors and, after polyclonal expansion, TIL products were tested against autologous tumor cells. Reactivity was assessed by IFNg production (ELISPOT) and upregulation of CD137. Baseline tumor samples were examined using flow cytometry, multiplexed quantitative immunofluorescence, Nanostring technology, for gene expression profile (GEP) analyses, as well as a next generation sequencing gene panel, for tumor mutational burden (TMB) calculation, to identify those features that distinguished patients with tumor-reactive and non-tumor-reactive TIL products.Results: Tumor-reactive TILs were detected in half of patients and were exclusively present in cells derived from the PD-1+ fraction. Flow-cytometric studies revealed that fresh tumors from patients rendering tumor-reactive TILs presented a significantly higher frequency of CD137+ cells within the PD1+CD8+ subset. Multiplexed immunofluorescence supported this finding, which was particularly striking in intraepithelial CD8 TILs. Baseline GEP analysis showed that patients rendering tumor-reactive TILs exhibited a significantly higher T-cell inflamed signature. Despite no correlation between TMB and GEP, both parameters stratified tumors, with patients with higher TMB and/or T-cell inflamed signature score rendering tumor-reactive TILs. Conclusion: We have demonstrated that PD-1 identifies autologous-tumor specific CD8 T cells infiltrating ovarian tumors and have uncovered predictive factors that identify OC patients who are likely to render tumor-reactive cells from PD-1+ TILs. These findings have important implications for improving the efficacy of TIL therapy in OC.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A688-A688
Author(s):  
Nicole Scharping ◽  
Allison Cafferata ◽  
Maximilian Heeg ◽  
Quynhanh Nguyen ◽  
Ananda Goldrath

BackgroundIn cancer, CD8+ T cells have the power to target and kill tumor cells with precision, but often fail due to chronic activation from the immunosuppressive tumor microenvironment (TME). T cells that experience prolonged activation in the TME differentiate into a severely dysfunctional cell state known as exhaustion. In healthy tissues, T cells differentiate into tissue-resident memory cells (TRM) in response to infection, which remain lodged in tissues to provide protection from reinfection. When TRM-like cells are found in patient tumors, they are correlated with improved outcomes and responses to immunotherapy. Understanding how to manipulate T cell fates in an effort to prevent exhaustion and favor TRM-characteristics could benefit cancer immunotherapy.MethodsTo explore differences between these cell states, we screened the core TRM gene-expression signatures for genes downregulated as T cells undergo terminal exhaustion. Targets were then overexpressed in antigen-specific T cells and adoptively transferred into tumor-bearing mice for analysis.ResultsInterestingly, many genes related to protein regulation and processing were identified, including a novel gene called Neuralized E3 Ubiquitin Protein Ligase 3 (Neurl3). Neurl3's function is not well described, however, experimentally mutating the RING domain suggests Neurl3 transfers ubiquitin to target proteins for degradation. When Neurl3 was overexpressed in tumor-specific T cells, we found tumor infiltrating lymphocytes still upregulated inhibitory receptors PD1 and Tim3, but showed enhanced anti-tumor function. Neurl3-overexpressing T cells had increased accumulation in the TME, upregulated canonical TRM markers CD69 and CD103, produced more cytokines, controlled tumor growth, and increased mouse survival in B16 melanoma.ConclusionsThese results highlight the understudied field of negative regulation of T cell function by protein degradation in T cell differentiation fate and uncover a potential gene target for immunocellular therapies to favor functional T cell fates in cancer.Ethics ApprovalThe study was approved by UCSD's Institutional Animal Care and Use Committee, protocol number S04105.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Benling Xu ◽  
Long Yuan ◽  
Guangyu Chen ◽  
Tiepeng Li ◽  
Jinxue Zhou ◽  
...  

Abstract Background Autologous tumor-infiltrating lymphocytes (Tils) immunotherapy is a promising treatment in patients with advanced hepatocellular cancer. Although Tils treatment has shown great promise, their persistence and the efficacy after adoptive-transfer are insufficient and remain a challenge. Studies have demonstrated that IL-15 and Akt inhibitor can regulate T cell differentiation and memory. Here, we constructed S-15 (Super human IL-15), a fusion protein consisting of human IL-15, the sushi domain of the IL-15 receptor α chain and human IgG-Fc. Herein we compared the effects of S-15 with IL-2 or in combination with Akti on the expansion and activation of Tils. Methods Hepatocellular cancer tissues were obtained from 6 patients, Tils were expanded using IL-2, IL-2/S-15, IL-2/Akti or in combination IL-2/S-15/Akti. At day 10, anti-CD3 antibody was added to the culture media and expanded to day 25. The composition, exhaustion and T-cell differentiation markers (CD45RA/CCR7) were analyzed by flow cytometry. Results We found that IL-2/S-15/Akti expanded Tils and showed the highest percentage of central memory CD45RA−CCR7+ phenotype prior to anti-CD3 antibody activation and after anti-CD3 antibody activation. T cells cultured with IL-2/S-15/Akti exhibited a mixture of CD4+, CD8+, and CD3+CD4−CD8− T cells; S-15 in combination with Akt inhibitor downregulated the expression of PD-1+Tim-3+ on Tils and decreased the Tregs in Tils. Additionally, the Tils expanded in the presence of the Akt inhibitor and S-15 showed enhanced antitumor activity as indicated by the increase in IFN-γ producing tumor infiltrating CD8+ T cells and without comprising the Tils expansion. Conclusion Our study elucidates that IL-2/S-15/Akti expanded Tils and represent a viable source for the cellular therapy for patients with hepatocellular cancer.


2019 ◽  
Vol 77 (17) ◽  
pp. 3441-3452 ◽  
Author(s):  
Ziqiang Wang ◽  
Kun Li ◽  
Wei Chen ◽  
Xiaoxia Wang ◽  
Yikun Huang ◽  
...  

AbstractThe elevated expression of immune checkpoints by the tumor microenvironment is associated with poor prognosis in several cancers due to the exhaustion of tumor-infiltrating lymphocytes (TILs), and the effective suppression of the expression of these genes is key to reversing the exhaustion of TILs. Herein, we determined that serine/arginine-rich splicing factor 2 (SRSF2) is a target for blocking the tumor microenvironment-associated immunosuppressive effects. We found that the expression of SRSF2 was increased in exhausted T cells and that SRSF2 was involved in multiple immune checkpoint molecules mediating TILs’ exhaustion. Furthermore, SRSF2 was revealed to regulate the transcription of these immune checkpoint genes by associating with an acyl-transferases P300/CBP complex and altering the H3K27Ac level near these genes, thereafter influencing the recruitment of signal transducer and activator of transcription 3 (STAT3) to these gene promoters. Collectively, our data indicated that SRSF2 functions as a modulator of the anti-tumor response of T cells and may be a therapeutic target for reversing the exhaustion of TILs.


Sign in / Sign up

Export Citation Format

Share Document