scholarly journals Dichloroacetate reverses sepsis-induced hepatic metabolic dysfunction

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Rabina Mainali ◽  
Manal Zabalawi ◽  
David Long ◽  
Nancy Buechler ◽  
Ellen Quillen ◽  
...  

Metabolic reprogramming between resistance and tolerance occurs within the immune system in response to sepsis. While metabolic tissues such as the liver are subjected to damage during sepsis, how their metabolic and energy reprogramming ensures survival is unclear. Employing comprehensive metabolomic, lipidomic, and transcriptional profiling in a mouse model of sepsis, we show that hepatocyte lipid metabolism, mitochondrial tricarboxylic acid (TCA) energetics, and redox balance are significantly reprogrammed after cecal ligation and puncture (CLP). We identify increases in TCA cycle metabolites citrate, cis-aconitate, and itaconate with reduced fumarate and triglyceride accumulation in septic hepatocytes. Transcriptomic analysis of liver tissue supports and extends the hepatocyte findings. Strikingly, the administration of the pyruvate dehydrogenase kinase (PDK) inhibitor dichloroacetate reverses dysregulated hepatocyte metabolism and mitochondrial dysfunction. In summary, our data indicate that sepsis promotes hepatic metabolic dysfunction and that targeting the mitochondrial PDC/PDK energy homeostat rebalances transcriptional and metabolic manifestations of sepsis within the liver.

2020 ◽  
Author(s):  
Rabina Mainali ◽  
Manal Zabalawi ◽  
David Long ◽  
Nancy Buechler ◽  
Ellen Quillen ◽  
...  

AbstractDramatic metabolic reprogramming between an anabolic resistance and catabolic tolerance state occurs within the immune system in response to systemic infection with the sepsis syndrome. While metabolic tissues such as the liver are subject to end-organ damage during sepsis and are the primary cause of sepsis death, how their metabolic and energy reprogramming during sepsis state ensures survival is unclear. Employing comprehensive metabolomic screening, targeted lipidomic screening, and transcriptional profiling in a mouse model of septic shock, we show that hepatocyte lipid metabolism, mitochondrial TCA energetics, and redox balance are significantly reprogramed after cecal ligation and puncture (CLP). We identify increases in TCA cycle metabolites citrate, cis-aconitate, and itaconate with reduced fumarate and triglyceride accumulation in septic hepatocytes. Transcription analysis of liver tissue supports and extends the hepatocyte findings. Strikingly, the administration of the pyruvate dehydrogenase kinase (PDK) inhibitor dichloroacetate (DCA) reverses dysregulated hepatocyte metabolism and mitochondrial dysfunction. Our data indicate sepsis promotes hepatic metabolic dysfunction. Furthermore, our data indicate that targeting the mitochondrial PDC/PDK energy home-ostat rebalances transcriptional and metabolic manifestations of sepsis within the liver.


2021 ◽  
Author(s):  
Taeseok Oh ◽  
Manal Zabalawi ◽  
Shalini Jain ◽  
David Long ◽  
Peter Stacpoole ◽  
...  

Sepsis is a life-threatening organ dysfunction by dysregulated host response to an infection. The metabolic aberrations associated with sepsis underly an acute and organism wide hyper-inflammatory response and multiple organ dysfunction; however, crosstalk between systemic metabolomic alterations and metabolic reprograming at organ levels remains unknown. We analyzed substrate utilization by the respiratory exchange ratio, energy expenditure, metabolomic screening and transcriptional profiling in a cecal ligation and puncture (CLP) model, to show that sepsis increases circulating free fatty acids and acylcarnitines but decreases levels of amino acids and carbohydrates leading to a drastic shift in systemic fuel preference. Comparative analysis of previously published metabolomics from septic liver indicates a positive correlation with hepatic and plasma metabolites during sepsis. In particular, glycine deficiency was a common abnormality of both plasma and the liver during sepsis. Interrogation of the hepatic transcriptome in septic mice suggests that the septic liver may contribute to systemic glycine deficiency by downregulating genes involved in glycine synthesis. Interestingly, intraperitoneal injection of the pyruvate dehydrogenase kinase (PDK) inhibitor dichloroacetate (DCA) reverses sepsis-induced anorexia, energy imbalance, dyslipidemia, hypoglycemia, and glycine deficiency. Collectively, our data indicate that PDK inhibition rescues systemic energy imbalance and metabolic dysfunction in sepsis partly through restoration of hepatic fuel metabolism.


2016 ◽  
Vol 310 (7) ◽  
pp. E484-E494 ◽  
Author(s):  
Rainey E. Patterson ◽  
Srilaxmi Kalavalapalli ◽  
Caroline M. Williams ◽  
Manisha Nautiyal ◽  
Justin T. Mathew ◽  
...  

The hepatic tricarboxylic acid (TCA) cycle is central to integrating macronutrient metabolism and is closely coupled to cellular respiration, free radical generation, and inflammation. Oxidative flux through the TCA cycle is induced during hepatic insulin resistance, in mice and humans with simple steatosis, reflecting early compensatory remodeling of mitochondrial energetics. We hypothesized that progressive severity of hepatic insulin resistance and the onset of nonalcoholic steatohepatitis (NASH) would impair oxidative flux through the hepatic TCA cycle. Mice (C57/BL6) were fed a high- trans-fat high-fructose diet (TFD) for 8 wk to induce simple steatosis and NASH by 24 wk. In vivo fasting hepatic mitochondrial fluxes were determined by 13C-nuclear magnetic resonance (NMR)-based isotopomer analysis. Hepatic metabolic intermediates were quantified using mass spectrometry-based targeted metabolomics. Hepatic triglyceride accumulation and insulin resistance preceded alterations in mitochondrial metabolism, since TCA cycle fluxes remained normal during simple steatosis. However, mice with NASH had a twofold induction ( P < 0.05) of mitochondrial fluxes (μmol/min) through the TCA cycle (2.6 ± 0.5 vs. 5.4 ± 0.6), anaplerosis (9.1 ± 1.2 vs. 16.9 ± 2.2), and pyruvate cycling (4.9 ± 1.0 vs. 11.1 ± 1.9) compared with their age-matched controls. Induction of the TCA cycle activity during NASH was concurrent with blunted ketogenesis and accumulation of hepatic diacylglycerols (DAGs), ceramides (Cer), and long-chain acylcarnitines, suggesting inefficient oxidation and disposal of excess free fatty acids (FFA). Sustained induction of mitochondrial TCA cycle failed to prevent accretion of “lipotoxic” metabolites in the liver and could hasten inflammation and the metabolic transition to NASH.


Cancers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 68 ◽  
Author(s):  
Simona Todisco ◽  
Paolo Convertini ◽  
Vito Iacobazzi ◽  
Vittoria Infantino

Hepatocellular carcinoma (HCC) is a common malignancy. Despite progress in treatment, HCC is still one of the most lethal cancers. Therefore, deepening molecular mechanisms underlying HCC pathogenesis and development is required to uncover new therapeutic strategies. Metabolic reprogramming is emerging as a critical player in promoting tumor survival and proliferation to sustain increased metabolic needs of cancer cells. Among the metabolic pathways, the tricarboxylic acid (TCA) cycle is a primary route for bioenergetic, biosynthetic, and redox balance requirements of cells. In recent years, a large amount of evidence has highlighted the relevance of the TCA cycle rewiring in a variety of cancers. Indeed, aberrant gene expression of several key enzymes and changes in levels of critical metabolites have been observed in many solid human tumors. In this review, we summarize the role of the TCA cycle rewiring in HCC by reporting gene expression and activity dysregulation of enzymes relating not only to the TCA cycle but also to glutamine metabolism, malate/aspartate, and citrate/pyruvate shuttles. Regarding the transcriptional regulation, we focus on the link between NF-κB-HIF1 transcriptional factors and TCA cycle reprogramming. Finally, the potential of metabolic targets for new HCC treatments has been explored.


1991 ◽  
Vol 260 (1) ◽  
pp. C50-C57 ◽  
Author(s):  
R. S. Hotchkiss ◽  
S. K. Song ◽  
J. J. Neil ◽  
R. D. Chen ◽  
J. K. Manchester ◽  
...  

Sepsis has been reported to cause mitochondrial dysfunction and inhibition of key enzymes that regulate the tricarboxylic acid (TCA) cycle. We investigated the effect of sepsis on high-energy phosphates, glycolytic and TCA cycle intermediates, and specific amino acids that are involved in regulating the size of the TCA cycle pool during changes in metabolic state of the heart. Sepsis was induced in 12 female rats by the cecal ligation and perforation technique under halothane anesthesia; seven control rats underwent cecal manipulation without ligation. At 36-42 h postsurgery, the rats were reanesthetized, the chest was opened, and the hearts were freeze-clamped. Perchloric acid extracts of the hearts were analyzed with fluorometric enzymatic methods and 31P nuclear magnetic resonance spectroscopy. There were no significant differences in the levels of the TCA cycle intermediates or high-energy phosphates between the septic and control rats. The major metabolic changes were the 28% decrease in alanine and the 31% decrease in glutamate in the septic hearts compared with control (P less than 0.05 and P less than 0.005, respectively). Phosphocholine, a component of membrane phospholipids, was increased by 91% in the septic hearts (P less than 0.01). We conclude that sepsis does not impair the TCA cycle or induce significant cellular ischemia in the heart. The increase in phosphocholine may represent significant cellular membrane disruption during sepsis.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1664
Author(s):  
Michela Marsico ◽  
Anna Santarsiero ◽  
Ilaria Pappalardo ◽  
Paolo Convertini ◽  
Lucia Chiummiento ◽  
...  

Metabolic reprogramming is a hallmark of cancer cells required to ensure high energy needs and the maintenance of redox balance. A relevant metabolic change of cancer cell bioenergetics is the increase in glutamine metabolism. Hepatocellular carcinoma (HCC), one of the most lethal cancer and which requires the continuous development of new therapeutic strategies, shows an up-regulation of human glutamate dehydrogenase 1 (hGDH1). GDH1 function may be relevant in cancer cells (or HCC) to drive the glutamine catabolism from L-glutamate towards the synthesis of α-ketoglutarate (α-KG), thus supplying key tricarboxylic acid cycle (TCA cycle) metabolites. Here, the effects of hGLUD1 gene silencing (siGLUD1) and GDH1 inhibition were evaluated. Our results demonstrate that siGLUD1 in HepG2 cells induces a significant reduction in cell proliferation (58.8% ± 10.63%), a decrease in BCL2 expression levels, mitochondrial mass (75% ± 5.89%), mitochondrial membrane potential (30% ± 7.06%), and a significant increase in mitochondrial superoxide anion (25% ± 6.55%) compared to control/untreated cells. The inhibition strategy leads us to identify two possible inhibitors of hGDH1: quercetin and Permethylated Anigopreissin A (PAA). These findings suggest that hGDH1 could be a potential candidate target to impair the metabolic reprogramming of HCC cells.


Author(s):  
Tatsunori Suzuki ◽  
Takahiro Kishikawa ◽  
Tatsuyuki Sato ◽  
Norihiko Takeda ◽  
Yuki Sugiura ◽  
...  

AbstractMutational activation of the KRAS gene occurs in almost all pancreatic ductal adenocarcinoma (PDAC) and is the earliest molecular event in their carcinogenesis. Evidence has accumulated of the metabolic reprogramming in PDAC, such as amino acid homeostasis and autophagic flux. However, the biological effects of KRAS mutation on metabolic reprogramming at the earlier stages of PDAC carcinogenesis are unclear. Here we report dynamic metabolic reprogramming in immortalized human non-cancerous pancreatic ductal epithelial cells, in which a KRAS mutation was induced by gene-editing, which may mimic early pancreatic carcinogenesis. Similar to the cases of PDAC, KRAS gene mutation increased the dependency on glucose and glutamine for maintaining the intracellular redox balance. In addition, the intracellular levels of amino acids were significantly decreased because of active protein synthesis, and the cells required greater autophagic flux to maintain their viability. The lysosomal inhibitor chloroquine significantly inhibited cell proliferation. Therefore, metabolic reprogramming is an early event in carcinogenesis initiated by KRAS gene mutation, suggesting a rationale for the development of nutritional interventions that suppress or delay the development of PDAC.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 903
Author(s):  
Xiao-Mei Zhang ◽  
De-Gao Chen ◽  
Shengwen Calvin Li ◽  
Bo Zhu ◽  
Zhong-Jun Li

Macrophages are widely distributed in tissues and function in homeostasis. During cancer development, tumor-associated macrophages (TAMs) dominatingly support disease progression and resistance to therapy by promoting tumor proliferation, angiogenesis, metastasis, and immunosuppression, thereby making TAMs a target for tumor immunotherapy. Here, we started with evidence that TAMs are highly plastic and heterogeneous in phenotype and function in response to microenvironmental cues. We pointed out that efforts to tear off the heterogeneous “camouflage” in TAMs conduce to target de facto protumoral TAMs efficiently. In particular, several fate-mapping models suggest that most tissue-resident macrophages (TRMs) are generated from embryonic progenitors, and new paradigms uncover the ontogeny of TAMs. First, TAMs from embryonic modeling of TRMs and circulating monocytes have distinct transcriptional profiling and function, suggesting that the ontogeny of TAMs is responsible for the functional heterogeneity of TAMs, in addition to microenvironmental cues. Second, metabolic remodeling helps determine the mechanism of phenotypic and functional characteristics in TAMs, including metabolic bias from macrophages’ ontogeny in macrophages’ functional plasticity under physiological and pathological conditions. Both models aim at dissecting the ontogeny-related metabolic regulation in the phenotypic and functional heterogeneity in TAMs. We argue that gleaning from the single-cell transcriptomics on subclonal TAMs’ origins may help understand the classification of TAMs’ population in subclonal evolution and their distinct roles in tumor development. We envision that TAM-subclone-specific metabolic reprogramming may round-up with future cancer therapies.


Toxins ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 384
Author(s):  
Shufeng Wang ◽  
Xin Yang ◽  
Feng Liu ◽  
Xinzheng Wang ◽  
Xuemin Zhang ◽  
...  

Hepatitis B virus (HBV) infection and aflatoxin B1 (AFB1) exposure have been recognized as independent risk factors for the occurrence and development of hepatocellular carcinoma (HCC), but their combined impacts and the potential metabolic mechanisms remain poorly characterized. Here, a comprehensive non-targeted metabolomic study was performed following AFB1 exposed to Hep3B cells at two different doses: 16 μM and 32 μM. The metabolites were identified and quantified by an ultra-performance liquid chromatography-mass spectrometry (UPLC-MS)-based strategy. A total of 2679 metabolites were identified, and 392 differential metabolites were quantified among three groups. Pathway analysis indicated that dynamic metabolic reprogramming was induced by AFB1 and various pathways changed significantly, including purine and pyrimidine metabolism, hexosamine pathway and sialylation, fatty acid synthesis and oxidation, glycerophospholipid metabolism, tricarboxylic acid (TCA) cycle, glycolysis, and amino acid metabolism. To the best of our knowledge, the alteration of purine and pyrimidine metabolism and decrease of hexosamine pathways and sialylation with AFB1 exposure have not been reported. The results indicated that our metabolomic strategy is powerful to investigate the metabolome change of any stimulates due to its high sensitivity, high resolution, rapid separation, and good metabolome coverage. Besides, these findings provide an overview of the metabolic mechanisms of the AFB1 combined with HBV and new insight into the toxicological mechanism of AFB1. Thus, targeting these metabolic pathways may be an approach to prevent carcinogen-induced cancer, and these findings may provide potential drug targets for therapeutic intervention.


Metabolites ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 346
Author(s):  
Adrian Benito ◽  
Nabil Hajji ◽  
Kevin O’Neill ◽  
Hector C. Keun ◽  
Nelofer Syed

Metabolic regulation of immune cells has arisen as a critical set of processes required for appropriate response to immunological signals. While our knowledge in this area has rapidly expanded in leukocytes, much less is known about the metabolic regulation of brain-resident microglia. In particular, the role of alternative nutrients to glucose remains poorly understood. Here, we use stable-isotope (13C) tracing strategies and metabolomics to characterize the oxidative metabolism of β-hydroxybutyrate (BHB) in human (HMC3) and murine (BV2) microglia cells and the interplay with glucose in resting and LPS-activated BV2 cells. We found that BHB is imported and oxidised in the TCA cycle in both cell lines with a subsequent increase in the cytosolic NADH:NAD+ ratio. In BV2 cells, stimulation with LPS upregulated the glycolytic flux, increased the cytosolic NADH:NAD+ ratio and promoted the accumulation of the glycolytic intermediate dihydroxyacetone phosphate (DHAP). The addition of BHB enhanced LPS-induced accumulation of DHAP and promoted glucose-derived lactate export. BHB also synergistically increased LPS-induced accumulation of succinate and other key immunometabolites, such as α-ketoglutarate and fumarate generated by the TCA cycle. Finally, BHB upregulated the expression of a key pro-inflammatory (M1 polarisation) marker gene, NOS2, in BV2 cells activated with LPS. In conclusion, we identify BHB as a potentially immunomodulatory metabolic substrate for microglia that promotes metabolic reprogramming during pro-inflammatory response.


Sign in / Sign up

Export Citation Format

Share Document