scholarly journals An open-source device for measuring food intake and operant behavior in rodent home-cages

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Bridget Alexandra Matikainen-Ankney ◽  
Thomas Earnest ◽  
Mohamed Ali ◽  
Eric Casey ◽  
Justin G Wang ◽  
...  

Feeding is critical for survival and disruption in the mechanisms that govern food intake underlie disorders such as obesity and anorexia nervosa. It is important to understand both food intake and food motivation to reveal mechanisms underlying feeding disorders. Operant behavioral testing can be used to measure the motivational component to feeding, but most food intake monitoring systems do not measure operant behavior. Here, we present a new solution for monitoring both food intake and motivation in rodent home-cages: The Feeding Experimentation Device version 3 (FED3). FED3 measures food intake and operant behavior in rodent home-cages, enabling longitudinal studies of feeding behavior with minimal experimenter intervention. It has a programmable output for synchronizing behavior with optogenetic stimulation or neural recordings. Finally, FED3 design files are open-source and freely available, allowing researchers to modify FED3 to suit their needs.

2020 ◽  
Author(s):  
Bridget A. Matikainen-Ankney ◽  
Thomas Earnest ◽  
Mohamed Ali ◽  
Eric Casey ◽  
Amy K. Sutton ◽  
...  

SummaryFeeding is critical for survival and disruption in the mechanisms that govern food intake underlie disorders such as obesity and anorexia nervosa. It is important to understand both food intake and food motivation to reveal mechanisms underlying feeding disorders. Operant behavioral testing can be used to measure the motivational component to feeding, but most food intake monitoring systems do not measure operant behavior. Here, we present a new solution for monitoring both food intake and motivation: The Feeding Experimentation Device version 3 (FED3). FED3 measures food intake and operant behavior in rodent home-cages, enabling longitudinal studies of feeding behavior with minimal experimenter intervention. It has a programmable output for synchronizing behavior with optogenetic stimulation or neural recordings. Finally, FED3 design files are open-source and freely available, allowing researchers to modify FED3 to suit their needs. In this paper we demonstrate the utility of FED3 in a range of experimental paradigms.In BriefUsing a novel, high-throughput home cage feeding platform, FED3, Matikainen-Ankney et al. quantify food intake and operant learning in groups of mice conducted at multiple institutions across the globe. Results include rates of operant efficiency, circadian feeding patterns, and operant optogenetic self-stimulation.HighlightsThe Feeding Experimentation Device version 3(FED3) records food intake and operant behavior in rodent home cages.Analysis of food intake includes total intake, meal pattern analysis, and circadian analysis of feeding patterns.FED3 also allows for operant behavioral assays to examine food learning and motivation.


1993 ◽  
Vol 38 (7) ◽  
pp. 469-471 ◽  
Author(s):  
Clifford W. Sharp

A woman aged 58 who has been blind since the age of nine months presented with major depression and a 40 year history of an eating disorder characterized by a restriction of food intake and body disparagement. The case is additional evidence that a specifically visual body image is not essential for the development of anorexia nervosa and supports the view that the concept of body image is unnecessary and unproductive in eating disorders. Greater emphasis should be placed on attitudes and feelings toward the body, and the possibility of an eating disorder should be considered in cases of older women with an atypical presentation.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Takeshi Inoue ◽  
Ryoko Otani ◽  
Toshiyuki Iguchi ◽  
Ryuta Ishii ◽  
Soh Uchida ◽  
...  

Abstract Background Autism spectrum disorder (ASD) and feeding and eating disorders (FEDs) such as anorexia nervosa (AN) are strongly linked as evidenced by frequent comorbidity and overlapping traits. However, eating and social behaviors are shaped by culture, so it is critical to examine these associations in different populations. Moreover, FEDs are heterogeneous, and there has been no examination of autistic traits in avoidant/restrictive food intake disorder (ARFID). Methods Therefore, we investigated the prevalence of ASD and autistic traits among Japanese children with AN (n = 92) or ARFID (n = 32) from a prospective multicenter cohort study using the Autism Spectrum Quotient Children’s version (AQC) and Children’s Eating Attitudes Test (ChEAT26). Results ASD prevalence was high in both AN and ARFID (16.3 and 12.5%, respectively). The AN group exhibited significantly higher scores on all AQC subscales than an age-matched healthy control (HC) group, but there were no significant correlations between AQC scores and ChEAT26 scores. In the AFRID group, AQC scores did not differ from HCs, but significant correlations were found between total AQC and ChEAT26 scores and between several AQC and ChEAT26 subscales. Conclusions Both the AN and ARFID groups had high prevalence rates of ASD. The AN group showed a significantly higher degree of autistic traits than the HC group; however, no difference was found between the ARFID and HC groups. Clinicians need to be aware of these rates when working with children with ED.


Endocrinology ◽  
2019 ◽  
Vol 160 (10) ◽  
pp. 2441-2452 ◽  
Author(s):  
Tomokazu Hata ◽  
Noriyuki Miyata ◽  
Shu Takakura ◽  
Kazufumi Yoshihara ◽  
Yasunari Asano ◽  
...  

Abstract Anorexia nervosa (AN) results in gut dysbiosis, but whether the dysbiosis contributes to AN-specific pathologies such as poor weight gain and neuropsychiatric abnormalities remains unclear. To address this, germ-free mice were reconstituted with the microbiota of four patients with restricting-type AN (gAN mice) and four healthy control individuals (gHC mice). The effects of gut microbes on weight gain and behavioral characteristics were examined. Fecal microbial profiles in recipient gnotobiotic mice were clustered with those of the human donors. Compared with gHC mice, gAN mice showed a decrease in body weight gain, concomitant with reduced food intake. Food efficiency ratio (body weight gain/food intake) was also significantly lower in gAN mice than in gHC mice, suggesting that decreased appetite as well as the capacity to convert ingested food to unit of body substance may contribute to poor weight gain. Both anxiety-related behavior measured by open-field tests and compulsive behavior measured by a marble-burying test were increased only in gAN mice but not in gHC mice. Serotonin levels in the brain stem of gAN mice were lower than those in the brain stem of gHC mice. Moreover, the genus Bacteroides showed the highest correlation with the number of buried marbles among all genera identified. Administration of Bacteroides vulgatus reversed compulsive behavior but failed to exert any substantial effect on body weight. Collectively, these results indicate that AN-specific dysbiosis may contribute to both poor weight gain and mental disorders in patients with AN.


2013 ◽  
Vol 169 (5) ◽  
pp. 639-647 ◽  
Author(s):  
Elizabeth A Lawson ◽  
Laura M Holsen ◽  
Rebecca DeSanti ◽  
McKale Santin ◽  
Erinne Meenaghan ◽  
...  

ObjectiveCorticotrophin-releasing hormone (CRH)-mediated hypercortisolemia has been demonstrated in anorexia nervosa (AN), a psychiatric disorder characterized by food restriction despite low body weight. While CRH is anorexigenic, downstream cortisol stimulates hunger. Using a food-related functional magnetic resonance imaging (fMRI) paradigm, we have demonstrated hypoactivation of brain regions involved in food motivation in women with AN, even after weight recovery. The relationship between hypothalamic–pituitary–adrenal (HPA) axis dysregulation and appetite and the association with food-motivation neurocircuitry hypoactivation are unknown in AN. We investigated the relationship between HPA activity, appetite, and food-motivation neurocircuitry hypoactivation in AN.DesignCross-sectional study of 36 women (13 AN, ten weight-recovered AN (ANWR), and 13 healthy controls (HC)).MethodsPeripheral cortisol and ACTH levels were measured in a fasting state and 30, 60, and 120 min after a standardized mixed meal. The visual analog scale was used to assess homeostatic and hedonic appetite. fMRI was performed during visual processing of food and non-food stimuli to measure the brain activation pre- and post-meal.ResultsIn each group, serum cortisol levels decreased following the meal. Mean fasting, 120 min post-meal, and nadir cortisol levels were high in AN vs HC. Mean postprandial ACTH levels were high in ANWR compared with HC and AN subjects. Cortisol levels were associated with lower fasting homeostatic and hedonic appetite, independent of BMI and depressive symptoms. Cortisol levels were also associated with between-group variance in activation in the food-motivation brain regions (e.g. hypothalamus, amygdala, hippocampus, orbitofrontal cortex, and insula).ConclusionsHPA activation may contribute to the maintenance of AN by the suppression of appetitive drive.


2015 ◽  
Author(s):  
R Long ◽  
A Barney ◽  
C Carlin ◽  
J Joyce ◽  
M Loquine ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Nikolaos Charmpilas ◽  
Christoph Ruckenstuhl ◽  
Valentina Sica ◽  
Sabrina Büttner ◽  
Lukas Habernig ◽  
...  

AbstractRecently, we reported that, in mice, hunger causes the autophagy-dependent release of a protein called “acyl-CoA-binding protein” or “diazepam binding inhibitor” (ACBP/DBI) from cells, resulting in an increase in plasma ACBP concentrations. Administration of extra ACBP is orexigenic and obesogenic, while its neutralization is anorexigenic in mice, suggesting that ACBP is a major stimulator of appetite and lipo-anabolism. Accordingly, obese persons have higher circulating ACBP levels than lean individuals, and anorexia nervosa is associated with subnormal ACBP plasma concentrations. Here, we investigated whether ACBP might play a phylogenetically conserved role in appetite stimulation. We found that extracellular ACBP favors sporulation in Saccharomyces cerevisiae, knowing that sporulation is a strategy for yeast to seek new food sources. Moreover, in the nematode Caenorhabditis elegans, ACBP increased the ingestion of bacteria as well as the frequency pharyngeal pumping. These observations indicate that ACBP has a phylogenetically ancient role as a ‘hunger factor’ that favors food intake.


1970 ◽  
Vol 18 (1-6) ◽  
pp. 359-364 ◽  
Author(s):  
G.F.M. Russell ◽  
C.J. Beardwood

Sign in / Sign up

Export Citation Format

Share Document