scholarly journals Gene signature for prognosis in comparison of pancreatic cancer patients with diabetes and non-diabetes

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10297
Author(s):  
Mingjun Yang ◽  
Boni Song ◽  
Juxiang Liu ◽  
Zhitong Bing ◽  
Yonggang Wang ◽  
...  

Background Pancreatic cancer (PC) has much weaker prognosis, which can be divided into diabetes and non-diabetes. PC patients with diabetes mellitus will have more opportunities for physical examination due to diabetes, while pancreatic cancer patients without diabetes tend to have higher risk. Identification of prognostic markers for diabetic and non-diabetic pancreatic cancer can improve the prognosis of patients with both types of pancreatic cancer. Methods Both types of PC patients perform differently at the clinical and molecular levels. The Cancer Genome Atlas (TCGA) is employed in this study. The gene expression of the PC with diabetes and non-diabetes is used for predicting their prognosis by LASSO (Least Absolute Shrinkage and Selection Operator) Cox regression. Furthermore, the results are validated by exchanging gene biomarker with each other and verified by the independent Gene Expression Omnibus (GEO) and the International Cancer Genome Consortium (ICGC). The prognostic index (PI) is generated by a combination of genetic biomarkers that are used to rank the patient’s risk ratio. Survival analysis is applied to test significant difference between high-risk group and low-risk group. Results An integrated gene prognostic biomarker consisted by 14 low-risk genes and six high-risk genes in PC with non-diabetes. Meanwhile, and another integrated gene prognostic biomarker consisted by five low-risk genes and three high-risk genes in PC with diabetes. Therefore, the prognostic value of gene biomarker in PC with non-diabetes and diabetes are all greater than clinical traits (HR = 1.102, P-value < 0.0001; HR = 1.212, P-value < 0.0001). Gene signature in PC with non-diabetes was validated in two independent datasets. Conclusions The conclusion of this study indicated that the prognostic value of genetic biomarkers in PCs with non-diabetes and diabetes. The gene signature was validated in two independent databases. Therefore, this study is expected to provide a novel gene biomarker for predicting prognosis of PC with non-diabetes and diabetes and improving clinical decision.

2021 ◽  
Author(s):  
Jianlu Song ◽  
Rexiati Ruze ◽  
Yuan Chen ◽  
Ruiyuan Xu ◽  
Xinpeng Yin ◽  
...  

Abstract Background: Pancreatic cancer (PC) is a highly malignant tumor featured with high intra-tumoral heterogeneity and poor prognosis. Cell-in-cell (CIC) structures have been reported in multiple tumor types, and their presence is thought to promote clonal selection and tumor evolution. Here, we aimed to establish a CIC-related gene signature for predicting the prognosis and evaluating immune microenvironment in PC. Methods: In this study, the gene expression data, as well as corresponding clinicopathological data of PC and normal pancreatic tissues were collected from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), International Cancer Genome Consortium (ICGC) and Gene Expression Omnibus (GEO) databases. Differential gene expression analysis, random forest screening, least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox regression analysis were performed on 101 CIC-related genes to construct a prognostic gene signature. The effectiveness and robustness of the prognostic gene signature were evaluated by receiver operating characteristic (ROC) curves, Kaplan-Meier survival analysis and establishing the nomogram model. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to annotate the biological functions of the differentially expressed genes (DEGs). Quantitative real-time PCR (qRT-PCR), western blotting and immunohistochemistry (IHC) staining were validated the core gene expression in both mRNA and protein levels. Results: A 4-gene signature was constructed to stratify patients into the low-risk and high-risk groups with distinct survival outcomes, somatic mutation profiles and immune features. The high-risk group had poorer prognosis than did the low-risk group. This signature was found to be an independent prognostic factor for PC patients with favorable predictive efficiency. Functional enrichment analyses showed that numerous terms and pathways associated with invasion and metastasis were enriched in the high-risk group. Moreover, the high-risk group had a higher tumor mutation burdens and lower immune cell infiltrations. KRT7, as the most important risk gene, was significantly associated with the worse prognosis of PC. CIC formation assay performing in PC cell lines indicated that KRT7 expression was correlated with CIC frequency. Conclusions: The signature based on four CIC-related genes could be applicable for predicting the prognosis of PC, and targeting CIC processes may be a potential therapeutic option. Further studies are needed to reveal the underlying molecular mechanisms and biological implications of CIC in PC progression.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8312 ◽  
Author(s):  
Kai Xiao ◽  
Qing Liu ◽  
Gang Peng ◽  
Jun Su ◽  
Chao-Ying Qin ◽  
...  

Background Lower grade glioma (LGG) are a heterogeneous tumor that may develop into high-grade malignant glioma seriously shortens patient survival time. The clinical prognostic biomarker of lower-grade glioma is still lacking. The aim of our study is to explore novel biomarkers for LGG that contribute to distinguish potential malignancy in low-grade glioma, to guide clinical adoption of more rational and effective treatments. Methods The RNA-seq data for LGG was downloaded from UCSC Xena and the Chinese Glioma Genome Atlas (CGGA). By a robust likelihood-based survival model, least absolute shrinkage and selection operator regression and multivariate Cox regression analysis, we developed a three-gene signature and established a risk score to predict the prognosis of patient with LGG. The three-gene signature was an independent survival predictor compared to other clinical parameters. Based on the signature related risk score system, stratified survival analysis was performed in patients with different age group, gender and pathologic grade. The prognostic signature was validated in the CGGA dataset. Finally, weighted gene co-expression network analysis (WGCNA) was carried out to find the co-expression genes related to the member of the signature and enrichment analysis of the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were conducted for those co-expression network. To prove the efficiency of the model, time-dependent receiver operating characteristic curves of our model and other models are constructed. Results In this study, a three-gene signature (WEE1, CRTAC1, SEMA4G) was constructed. Based on the model, the risk score of each patient was calculated with LGG (low-risk vs. high-risk, hazard ratio (HR) = 0.198 (95% CI [0.120–0.325])) and patients in the high-risk group had significantly poorer survival results than those in the low-risk group. Furthermore, the model was validated in the CGGA dataset. Lastly, by WGCNA, we constructed the co-expression network of the three genes and conducted the enrichment of GO and KEGG. Our study identified a three-gene model that showed satisfactory performance in predicting the 1-, 3- and 5-year survival of LGG patients compared to other models and may be a promising independent biomarker of LGG.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8128 ◽  
Author(s):  
Cheng Yue ◽  
Hongtao Ma ◽  
Yubai Zhou

Background Lung cancer has the highest morbidity and mortality worldwide, and lung adenocarcinoma (LADC) is the most common pathological subtype. Accumulating evidence suggests the tumor microenvironment (TME) is correlated with the tumor progress and the patient’s outcome. As the major components of TME, the tumor-infiltrated immune cells and stromal cells have attracted more and more attention. In this study, differentially expressed immune and stromal signature genes were used to construct a TME-related prognostic model for predicting the outcomes of LADC patients. Methods The expression profiles of LADC samples with clinical information were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). The differentially expressed genes (DEGs) related to the TME of LADC were identified using TCGA dataset by Wilcoxon rank sum test. The prognostic effects of TME-related DEGs were analyzed using univariate Cox regression. Then, the least absolute shrinkage and selection operator (LASSO) regression was performed to reduce the overfit and the number of genes for further analysis. Next, the prognostic model was constructed by step multivariate Cox regression and risk score of each sample was calculated. Then, survival and Receiver Operating Characteristic (ROC) analyses were conducted to validate the model using TCGA and GEO datasets, respectively. The Kyoto Encyclopedia of Genes and Genomes analysis of gene signature was performed using Gene Set Enrichment Analysis (GSEA). Finally, the overall immune status, tumor purity and the expression profiles of HLA genes of high- and low-risk samples was further analyzed to reveal the potential mechanisms of prognostic effects of the model. Results A total of 93 TME-related DEGs were identified, of which 23 DEGs were up-regulated and 70 DEGs were down-regulated. The univariate cox analysis indicated that 23 DEGs has the prognostic effects, the hazard ratio ranged from 0.65 to 1.25 (p < 0.05). Then, seven genes were screened out from the 23 DEGs by LASSO regression method and were further analyzed by step multivariate Cox regression. Finally, a three-gene (ADAM12, Bruton Tyrosine Kinase (BTK), ERG) signature was constructed, and ADAM12, BTK can be used as independent prognostic factors. The three-gene signature well stratified the LADC patients in both training (TCGA) and testing (GEO) datasets as high-risk and low-risk groups, the 3-year area under curve (AUC) of ROC curves of three GEO sets were 0.718 (GSE3141), 0.646 (GSE30219) and 0.643 (GSE50081). The GSEA analysis indicated that highly expressed ADAM12, BTK, ERG mainly correlated with the activation of pathways involving in focal adhesion, immune regulation. The immune analysis indicated that the low-risk group has more immune activities and higher expression of HLA genes than that of the high-risk group. In sum, we identified and constructed a three TME-related DEGs signature, which could be used to predict the prognosis of LADC patients.


2021 ◽  
Author(s):  
Peng-wei Cao ◽  
Lei Liu ◽  
Zi-Han Li ◽  
Feng Cao ◽  
Fu-Bao Liu

Abstract Background: The role of N6-methyladenosine (m6A)-associated long-stranded non-coding RNA (lncRNA) in pancreatic cancer is unclear. Therefore, we analysed the characteristics and tumour microenvironment in pancreatic cancer and determined the value of m6A-related lncRNAs for prognosis and drug target prediction.Methods: An m6A-lncRNA co-expression network was constructed using The Cancer Genome Atlas database to screen m6A-related lncRNAs. Prognosis-related lncRNAs were screened using univariate Cox regression; patients were divided into high- and low-risk groups and randomised into training and test groups. In the training group, least absolute shrinkage and selection operator (LASSO) was used for regression analysis and to construct a prognostic model, which was validated in the test group. Tumour mutational burden (TMB), immune evasion, and immune function of risk genes were analysed using R; drug sensitivity and potential drugs were examined using the Genomics of Drug Sensitivity in Cancer database.Results: We screened 129 m6A-related lncRNAs; 17 prognosis-related m6A-related lncRNAs were obtained using multivariate analysis and three m6A-related lncRNAs (AC092171.5, MEG9, AC002091.1) were screened using LASSO regression. Survival rates were significantly higher (P < 0.05) in the low-risk than in the high-risk group. Risk score was an independent predictor affecting survival (P < 0.001), with the highest risk score being obtained by calculating the c-index. The TMB significantly differed between the high- and low-risk groups (P < 0.05). In the high- and low-risk groups, mutations were detected in 61 of 70 samples and 49 of 71 samples, respectively, with KRAS, TP53, and SMAD4 showing the highest mutation frequencies in both groups. A lower survival rate was observed in patients with a high versus low TMB. Immune function HLA, Cytolytic activity, and Inflammation-promoting, T cell co-inhibition, Check-point, and T cell co-stimulation significantly differed in different subgroups (P < 0.05). Immune evasion scores were significantly higher in the high-risk group than in the low-risk group. Eight sensitive drugs were screened: ABT.888, ATRA, AP.24534, AG.014699, ABT.263, axitinib, A.443654, and A.770041.Conclusions: We screened m6A-related lncRNAs using bioinformatics, constructed a prognosis-related model, explored TMB and immune function differences in pancreatic cancer, and identified potential therapeutic agents, providing a foundation for further studies of pancreatic cancer diagnosis and treatment.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jinyuan Shi ◽  
Pu Wu ◽  
Lei Sheng ◽  
Wei Sun ◽  
Hao Zhang

Abstract Background Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer (TC), accounting for more than 80% of all cases. Ferroptosis is a novel iron-dependent and Reactive oxygen species (ROS) reliant type of cell death which is distinct from the apoptosis, necroptosis and pyroptosis. Considerable studies have demonstrated that ferroptosis is involved in the biological process of various cancers. However, the role of ferroptosis in PTC remains unclear. This study aims at exploring the expression of ferroptosis-related genes (FRG) and their prognostic values in PTC. Methods A ferroptosis-related gene signature was constructed using lasso regression analysis through the PTC datasets of the Cancer Genome Atlas (TCGA). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to investigate the bioinformatics functions of significantly different genes (SDG) of ferroptosis. Additionally, the correlations of ferroptosis and immune cells were assessed through the single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT database. Finally, SDG were test in clinical PTC specimens and normal thyroid tissues. Results LASSO regression model was utilized to establish a novel FRG signature with 10 genes (ANGPTL7, CDKN2A, DPP4, DRD4, ISCU, PGD, SRXN1, TF, TFRC, TXNRD1) to predicts the prognosis of PTC, and the patients were separated into high-risk and low-risk groups by the risk score. The high-risk group had poorer survival than the low-risk group (p < 0.001). Receiver operating characteristic (ROC) curve analysis confirmed the signature's predictive capacity. Multivariate regression analysis identified the prognostic signature-based risk score was an independent prognostic indicator for PTC. The functional roles of the DEGs in the TGCA PTC cohort were explored using GO enrichment and KEGG pathway analyses. Immune related analysis demonstrated that the most types of immune cells and immunological function in the high-risk group were significant different with those in the low-risk group. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) verified the SDG have differences in expression between tumor tissue and normal thyroid tissue. In addition, cell experiments were conducted to observe the changes in cell morphology and expression of signature’s genes with the influence of ferroptosis induced by sorafenib. Conclusions We identified differently expressed FRG that may involve in PTC. A ferroptosis-related gene signature has significant values in predicting the patients’ prognoses and targeting ferroptosis may be an alternative for PTC’s therapy.


2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Xin Zhu ◽  
Qian Zhao ◽  
Xiaoyu Su ◽  
Jinming Ke ◽  
Yunyun Yi ◽  
...  

Abstract The identification of effective signatures is crucial to predict the prognosis of acute myeloid leukemia (AML). The investigation aimed to identify a new signature for AML prognostic prediction by using the three-gene expression (octamer-binding transcription factor 4 (OCT4), POU domain type 5 transcription factor 1B (POU5F1B) and B-cell-specific Moloney murine leukemia virus integration site-1 pseudogene 1 (BMI1P1). The expressions of genes were obtained from our previous study. Only the specimens in which three genes were all expressed were included in this research. A three-gene signature was constructed by the multivariate Cox regression analyses to divide patients into high-risk and low-risk groups. Receiver operating characteristic (ROC) analysis of the three-gene signature (area under ROC curve (AUC) = 0.901, 95% CI: 0.821–0.981, P&lt;0.001) indicated that it was a more valuable signature for distinguishing between patients and controls than any of the three genes. Moreover, white blood cells (WBCs, P=0.004), platelets (PLTs, P=0.017), percentage of blasts in bone marrow (BM) (P=0.011) and complete remission (CR, P=0.027) had significant differences between two groups. Furthermore, high-risk group had shorter leukemia-free survival (LFS) and overall survival (OS) than low-risk group (P=0.026; P=0.006), and the three-gene signature was a prognostic factor. Our three-gene signature for prognosis prediction in AML may serve as a prognostic biomarker.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Wei Hu ◽  
Mingyue Li ◽  
Qi Zhang ◽  
Chuan Liu ◽  
Xinmei Wang ◽  
...  

Abstract Background Copy number variation (CNVs) is a key factor in breast cancer development. This study determined prognostic molecular characteristics to predict breast cancer through performing a comprehensive analysis of copy number and gene expression data. Methods Breast cancer expression profiles, CNV and complete information from The Cancer Genome Atlas (TCGA) dataset were collected. Gene Expression Omnibus (GEO) chip data sets (GSE20685 and GSE31448) containing breast cancer samples were used as external validation sets. Univariate survival COX analysis, multivariate survival COX analysis, least absolute shrinkage and selection operator (LASSO), Chi square, Kaplan-Meier (KM) survival curve and receiver operating characteristic (ROC) analysis were applied to build a gene signature model and assess its performance. Results A total of 649 CNV related-differentially expressed gene obtained from TCGA-breast cancer dataset were related to several cancer pathways and functions. A prognostic gene sets with 9 genes were developed to stratify patients into high-risk and low-risk groups, and its prognostic performance was verified in two independent patient cohorts (n = 327, 246). The result uncovered that 9-gene signature could independently predict breast cancer prognosis. Lower mutation of PIK3CA and higher mutation of TP53 and CDH1 were found in samples with high-risk score compared with samples with low-risk score. Patients in the high-risk group showed higher immune score, malignant clinical features than those in the low-risk group. The 9-gene signature developed in this study achieved a higher AUC. Conclusion The current research established a 5-CNV gene signature to evaluate prognosis of breast cancer patients, which may innovate clinical application of prognostic assessment.


Author(s):  
Xinshuang Yu ◽  
Peng Dong ◽  
Yu Yan ◽  
Fengjun Liu ◽  
Hui Wang ◽  
...  

Pancreatic cancer is a highly aggressive disease with poor prognosis. N6-methyladenosine (m6A) is critical for post-transcriptional modification of messenger RNA (mRNA) and long non-coding RNA (lncRNA). However, the m6A-associated lncRNAs (m6A-lncRNA) and their values in predicting clinical outcomes and immune microenvironmental status in pancreatic cancer patients remain largely unexplored. This study aimed to evaluate the importance of m6A-lncRNA and established a m6A-lncRNA signature for predicting immunotherapeutic response and prognosis of pancreatic cancer. The m6A-lncRNA co-expression networks were constructed using data from the TCGA and GTEx database. Based on the least absolute shrinkage and selection operator (LASSO) analysis, we constructed an 8 m6A-lncRNA signature risk model, and selection operator (LASSO) analysis, and stratified patients into the high- and low-risk groups with significant difference in overall survival (OS) (HR = 2.68, 95% CI = 1.74–4.14, P &lt; 0.0001). Patients in the high-risk group showed significantly reduced OS compared to patients in the low-risk group (P &lt; 0.001). The clinical characteristics and m6A-lncRNA risk scores were used to construct a nomogram which accurately predicted the OS in pancreatic cancer. TIMER 2.0 were used to investigate tumor immune infiltrating cells and its relationship with pancreatic cancer. CIBERSORT analysis revealed increased higher infiltration proportions of M0 and M2 macrophages, and lower infiltration of naive B cell, CD8+ T cell and Treg cells in the high-risk group. Compared to the low-risk group, functional annotation using ssGSEA showed that T cell infiltration and the differential immune-related check-point genes are expressed at low level in the high-risk group (P &lt; 0.05). In summary, our study constructed a novel m6A-associated lncRNAs signature to predict immunotherapeutic responses and provided a novel nomogram for the prognosis prediction of pancreatic cancer.


2021 ◽  
Author(s):  
Chen-jie Qiu ◽  
Xue-bing Wang ◽  
Zi-ruo Zheng ◽  
Chao-zhi Yang ◽  
Kai Lin ◽  
...  

Abstract Background: The purpose of this study was to identify ferroptosis-related genes (FRGs) associated with the prognosis of pancreatic cancer and to construct a prognostic model based on FRGs. Methods: Based on pancreatic cancer data obtained from The Cancer Genome Atlas database, we established the prognostic model from 232 FRGs. A nomogram was constructed by combining the prognostic model and clinicopathological features. Gene Expression Omnibus datasets and tissue samples obtained from our center were utilized to validate the model. Relationship between risk score and immune cell infiltration was explored by CIBERSORT and TIMER.Results: The prognostic model was established based on four FRGs (ENPP2, ATG4D, SLC2A1 and MAP3K5) and can be an independent risk factor in pancreatic cancer (HR 1.648, 95% CI 1.335-2.035, p < 0.001). Based on the median risk score, patients were divided into a high-risk group and a low-risk group. The prognosis of the low-risk group was significantly better than that of the high-risk group. In the high-risk group, patients treated with chemotherapy had a better prognosis. The nomogram showed that the model was the most important element. Gene set enrichment analysis identified three key pathways, namely, TGFβ signaling, HIF signaling pathway and adherens junction. The prognostic model can also affect the immune cell infiltration, such as macrophages M0, M1, CD4+T cell and CD8+T cell. Conclusion: A ferroptosis-related prognostic model can be employed to predict the prognosis of pancreatic cancer. Ferroptosis can be an important marker and immunotherapy can be a potential therapeutic target for pancreatic cancer.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jiacheng Huang ◽  
Zhitao Chen ◽  
Chenchen Ding ◽  
Shengzhang Lin ◽  
Dalong Wan ◽  
...  

BackgroundPancreatic cancer is one of the principal causes of tumor-related death worldwide. CXC chemokines, a subfamily of functional chemotactic peptides, affect the initiation of tumor cells and clinical outcomes in several human malignant tumors. However, the specific biological functions and clinical significance of CXC chemokines in pancreatic cancer have not been clarified.MethodsBioinformatics analysis tools and databases, including ONCOMINE, GEPIA2, the Human Protein Atlas, DAVID, GeneMANIA, cBioPortal, STRING, DGidb, MethSurv, TRRUST, SurvExpress, SurvivalMeth, and TIMER, were utilized to clarify the clinical significance and biological functions of CXC chemokine in pancreatic cancer.ResultsExcept for CXCL11/12, the transcriptional levels of other CXC chemokines in PAAD tissues were significantly elevated, and the expression level of CXCL16 was the highest among these CXC chemokines. Our findings also suggested that all of the CXC chemokines were linked to tumor-immune dysfunction involving the abundance of immune cell infiltration, and the Cox proportional hazard model confirmed that dendritic and CXCL3/5/7/8/11/17 were significantly associated with the clinical outcome of PAAD patients. Furthermore, increasing expressions of CXCL5/9/10/11/17 were related to unfavorable overall survival (OS), and only CXCL17 was a prognostic factor for disease-free survival (DFS) in PAAD patients. The expression pattern and prognostic power of CXC chemokines were further validated in the independent GSE62452 dataset. For the prognostic value of single CpG of DNA methylation of CXC chemokines in patients with PAAD, we identified 3 CpGs of CXCL1, 2 CpGs of CXCL2, 2 CpGs of CXCL3, 3 CpGs of CXCL4, 10 CpGs of CXCL5, 1 CpG of CXCL6, 1 CpG of CXCL7, 3 CpGs of CXCL12, 3 CpGs of CXCL14, and 5 CpGs of CXCL17 that were significantly associated with prognosis in PAAD patients. Moreover, the prognostic value of CXC chemokine signature in PAAD was explored and tested in two independent cohort, and results indicated that the patients in the low-risk group had a better OS compared with the high-risk group. Survival analysis of the DNA methylation of CXC chemokine signature demonstrated that PAAD patients in the high-risk group had longer survival times.ConclusionsThese findings reveal the novel insights into CXC chemokine expression and their biological functions in the pancreatic cancers, which might serve as accurate prognostic biomarkers and suitable immunotherapeutic targets for patients with pancreatic cancer.


Sign in / Sign up

Export Citation Format

Share Document