scholarly journals Comparative hologenomics of two Ixodes scapularis tick populations in New Jersey

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12313
Author(s):  
Dana C. Price ◽  
Julia R. Brennan ◽  
Nicole E. Wagner ◽  
Andrea M. Egizi

Tick-borne diseases, such as those transmitted by the blacklegged tick Ixodes scapularis, are a significant and growing public health problem in the US. There is mounting evidence that co-occurring non-pathogenic microbes can also impact tick-borne disease transmission. Shotgun metagenome sequencing enables sampling of the complete tick hologenome—the collective genomes of the tick and all of the microbial species contained therein, whether pathogenic, commensal or symbiotic. This approach simultaneously uncovers taxonomic composition and allows the detection of intraspecific genetic variation, making it a useful tool to compare spatial differences across tick populations. We evaluated this approach by comparing hologenome data from two tick samples (N = 6 ticks per location) collected at a relatively fine spatial scale, approximately 23 km apart, within a single US county. Several intriguing variants in the data between the two sites were detected, including polymorphisms in both in the tick’s own mitochondrial DNA and that of a rickettsial endosymbiont. The two samples were broadly similar in terms of the microbial species present, including multiple known tick-borne pathogens (Borrelia burgdorferi, Babesia microti, and Anaplasma phagocytophilum), filarial nematodes, and Wolbachia and Babesia species. We assembled the complete genome of the rickettsial endosymbiont (most likely Rickettsia buchneri) from both populations. Our results provide further evidence for the use of shotgun metagenome sequencing as a tool to compare tick hologenomes and differentiate tick populations across localized spatial scales.

Author(s):  
Marc-Antoine Tutt-Guérette ◽  
Mengru Yuan ◽  
Daniel Szaroz ◽  
Britt McKinnon ◽  
Yan Kestens ◽  
...  

Lyme disease is a growing public health problem in Québec. Its emergence over the last decade is caused by environmental and anthropological factors that favour the survival of Ixodes scapularis, the vector of Lyme disease transmission. The objective of this study was to estimate the speed and direction of human Lyme disease emergence in Québec and to identify spatiotemporal risk patterns. A surface trend analysis was conducted to estimate the speed and direction of its emergence based upon the first detected case of Lyme disease in each municipality in Québec since 2004. A cluster analysis was also conducted to identify at-risk regions across space and time. These analyses were reproduced for the date of disease onset and date of notification for each case of Lyme disease. It was estimated that Lyme disease is spreading northward in Québec at a speed varying between 18 and 32 km/year according to the date of notification and the date of disease onset, respectively. A significantly high risk of disease was found in seven clusters identified in the south-west of Québec in the sociosanitary regions of Montérégie and Estrie. The results obtained in this study improve our understanding of the spatiotemporal patterns of Lyme disease in Québec, which can be used for proactive, targeted interventions by public and clinical health authorities.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10424
Author(s):  
Joshua C. Gil ◽  
Zeinab H. Helal ◽  
Guillermo Risatti ◽  
Sarah M. Hird

Ticks are globally distributed arthropods and a public health concern due to the many human pathogens they carry and transmit, including the causative agent of Lyme disease, Borrelia burgdorferi. As tick species’ ranges increase, so do the number of reported tick related illnesses. The microbiome is a critical part of understanding arthropod biology, and the microbiome of pathogen vectors may provide critical insight into disease transmission and management. Yet we lack a comprehensive understanding of the microbiome of wild ticks, including what effect the presence of multiple tick-borne pathogens (TBPs) has on the microbiome. In this study we chose samples based on life stage (adult or nymph) and which TBPs were present. We used DNA from previously extracted Ixodes scapularis ticks that tested positive for zero, one, two or three common TBPs (B. burgdorferi, B. miyamotoi, Anaplasma phagocytophilum, Babesia microti). We produced 16S rRNA amplicon data for the whole tick microbiome and compared samples across TBPs status, single vs multiple coinfections, and life stages. Focusing on samples with a single TBP, we found no significant differences in microbiome diversity in ticks that were infected with B. burgdorferi and ticks with no TBPs. When comparing multiple TBPs, we found no significant difference in both alpha and beta diversity between ticks with a single TBP and ticks with multiple TBPs. Removal of TBPs from the microbiome did not alter alpha or beta diversity results. Life stage significantly correlated to variation in beta diversity and nymphs had higher alpha diversity than adult ticks. Rickettsia, a common tick endosymbiont, was the most abundant genus. This study confirms that the wild tick microbiome is highly influenced by life stage and much less by the presence of human pathogenic bacteria.


Author(s):  
Marc-Antoine Tutt-Gurétte ◽  
Mengru Yuan ◽  
Daniel Szarosz ◽  
Britt McKinnon ◽  
Yan Kestens ◽  
...  

Lyme disease is a growing public health problem in Québec. Its emergence over the last decade is caused by environmental and anthropological factors that favour the survival of Ixodes scapularis, the vector of Lyme disease transmission. The objective of this study was to estimate the speed and direction of Lyme disease emergence in Québec and to identify spatiotemporal risk patterns. A surface trend analysis was conducted to estimate the speed and direction of its emergence based upon the first detected case of Lyme disease in each municipality in Québec since 2004. A cluster analysis was also conducted to identify at-risk regions across space and time. These analyses were reproduced for the date of disease onset and date of notification for each case of Lyme disease. It was estimated that Lyme disease is spreading northward in Québec at a speed varying between 18 and 32 km/year according to the date of notification and the date of disease onset, respectively. A high rate of disease risk was found in seven clusters identified in the south-west of Québec in the sociosanitary regions of Montérégie and Estrie. The results obtained in this study improve our understanding of the spatiotemporal patterns of Lyme disease in Québec, which can be used for proactive, targeted interventions by public and clinical health authorities.


EcoHealth ◽  
2021 ◽  
Author(s):  
Felipe A. Hernández ◽  
Amanda N. Carr ◽  
Michael P. Milleson ◽  
Hunter R. Merrill ◽  
Michael L. Avery ◽  
...  

AbstractWe investigated the landscape epidemiology of a globally distributed mammal, the wild pig (Sus scrofa), in Florida (U.S.), where it is considered an invasive species and reservoir to pathogens that impact the health of people, domestic animals, and wildlife. Specifically, we tested the hypothesis that two commonly cited factors in disease transmission, connectivity among populations and abundant resources, would increase the likelihood of exposure to both pseudorabies virus (PrV) and Brucella spp. (bacterial agent of brucellosis) in wild pigs across the Kissimmee Valley of Florida. Using DNA from 348 wild pigs and sera from 320 individuals at 24 sites, we employed population genetic techniques to infer individual dispersal, and an Akaike information criterion framework to compare candidate logistic regression models that incorporated both dispersal and land cover composition. Our findings suggested that recent dispersal conferred higher odds of exposure to PrV, but not Brucella spp., among wild pigs throughout the Kissimmee Valley region. Odds of exposure also increased in association with agriculture and open canopy pine, prairie, and scrub habitats, likely because of highly localized resources within those land cover types. Because the effect of open canopy on PrV exposure reversed when agricultural cover was available, we suggest that small-scale resource distribution may be more important than overall resource abundance. Our results underscore the importance of studying and managing disease dynamics through multiple processes and spatial scales, particularly for non-native pathogens that threaten wildlife conservation, economy, and public health.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Mark P. Nelder ◽  
Curtis B. Russell ◽  
Antonia Dibernardo ◽  
Katie M. Clow ◽  
Steven Johnson ◽  
...  

Abstract Background The universal nature of the human–companion animal relationship and their shared ticks and tick-borne pathogens offers an opportunity for improving public and veterinary health surveillance. With this in mind, we describe the spatiotemporal trends for blacklegged tick (Ixodes scapularis) submissions from humans and companion animals in Ontario, along with pathogen prevalence. Methods We tested tick samples submitted through passive surveillance (2011–2017) from humans and companion animals for Borrelia burgdorferi, Borrelia miyamotoi, Anaplasma phagocytophilum and Babesia microti. We describe pathogen prevalence in ticks from humans and from companion animals and constructed univariable Poisson and negative binomial regression models to explore the spatiotemporal relationship between the rates of tick submissions by host type. Results During the study, there were 17,230 blacklegged tick samples submitted from humans and 4375 from companion animals. Tick submission rates from companion animals were higher than expected in several public health units (PHUs) lacking established tick populations, potentially indicating newly emerging populations. Pathogen prevalence in ticks was higher in PHUs where established blacklegged tick populations exist. Borrelia burgdorferi prevalence was higher in ticks collected from humans (maximum likelihood estimate, MLE = 17.5%; 95% confidence interval, CI 16.97–18.09%) than from companion animals (9.9%, 95% CI 9.15–10.78%). There was no difference in pathogen prevalence in ticks by host type for the remaining pathogens, which were found in less than 1% of tested ticks. The most common co-infection B. burgdorferi + B. miyamotoi occurred in 0.11% of blacklegged ticks from humans and animals combined. Borrelia burgdorferi prevalence was higher in unengorged (21.9%, 95% CI 21.12–22.65%) than engorged ticks (10.0%, 95% CI 9.45–10.56%). There were no consistent and significant spatiotemporal relationships detected via regression models between the annual rates of submission of each host type. Conclusions While B. burgdorferi has been present in blacklegged ticks in Ontario for several decades, other tick-borne pathogens are also present at low prevalence. Blacklegged tick and pathogen surveillance data can be used to monitor risk in human and companion animal populations, and efforts are under consideration to unite surveillance efforts for the different target populations. Graphic Abstract


Author(s):  
T E Zembsch ◽  
X Lee ◽  
G M Bron ◽  
L C Bartholomay ◽  
S M Paskewitz

Abstract Borrelia burgdorferi, the spirochete that causes Lyme disease, is endemic and widespread in Wisconsin. Research in the northeastern United States has revealed a positive association between Babesia microti, the main pathogen that causes babesiosis in humans, and Bo. burgdorferi in humans and in ticks. This study was conducted to examine associations between the disease agents in the Upper midwestern United States. Ixodes scapularis Say nymphs (N = 2,858) collected between 2015 and 2017 from nine locations in Wisconsin were tested for Babesia spp. and Borrelia spp. using real-time PCR. Two species of Babesia were detected; Ba. microti and Babesia odocoilei (a parasite of members of the family Cervidae). Prevalence of infection at the nine locations ranged from 0 to 13% for Ba. microti, 11 to 31% for Bo. burgdorferi sensu stricto, and 5.7 to 26% for Ba. odocoilei. Coinfection of nymphs with Bo. burgdorferi and Ba. odocoilei was detected in eight of the nine locations and significant positive associations were observed in two of the eight locations. The prevalence of nymphal coinfection with both and Bo. burgdorferi and Ba. microti ranged from 0.81 to 6.5%. These two pathogens were significantly positively associated in one of the five locations where both pathogens were detected. In the other four locations, the observed prevalence of coinfection was higher than expected in all but one site-year. Clinics and healthcare providers should be aware of the association between Ba. microti and Bo. burgdorferi pathogens when treating patients who report tick bites.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shan Sun ◽  
Xiangzhu Zhu ◽  
Xiang Huang ◽  
Harvey J. Murff ◽  
Reid M. Ness ◽  
...  

AbstractThe gut microbiota plays an important role in human health and disease. Stool, rectal swab and rectal mucosal tissue samples have been used in individual studies to survey the microbial community but the consequences of using these different sample types are not completely understood. In this study, we report differences in stool, rectal swab and rectal mucosal tissue microbial communities with shotgun metagenome sequencing of 1397 stool, swab and mucosal tissue samples from 240 participants. The taxonomic composition of stool and swab samples was distinct, but less different to each other than mucosal tissue samples. Functional profile differences between stool and swab samples are smaller, but mucosal tissue samples remained distinct from the other two types. When the taxonomic and functional profiles were used for inference in association with host phenotypes of age, sex, body mass index (BMI), antibiotics or non-steroidal anti-inflammatory drugs (NSAIDs) use, hypothesis testing using either stool or rectal swab gave broadly significantly correlated results, but inference performed on mucosal tissue samples gave results that were generally less consistent with either stool or swab. Our study represents an important resource for determination of how inference can change for taxa and pathways depending on the choice of where to sample within the human gut.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Kristen L. Knapp ◽  
Nancy A. Rice

Borrelia burgdorferi, the causative agent of Lyme disease, andBabesia microti, a causative agent of babesiosis, are increasingly implicated in the growing tick-borne disease burden in the northeastern United States. These pathogens are transmitted via the bite of an infected tick vector,Ixodes scapularis, which is capable of harboring and inoculating a host with multiple pathogens simultaneously. Clinical presentation of the diseases is heterogeneous and ranges from mild flu-like symptoms to near-fatal cardiac arrhythmias. While the reason for the variability is not known, the possibility exists that concomitant infection with bothB. burgdorferiandB. microtimay synergistically increase disease severity. In an effort to clarify the current state of understanding regarding coinfection withB. burgdorferiandB. microti, in this review, we discuss the geographical distribution and pathogenesis of Lyme disease and babesiosis in the United States, the immunological response of humans toB. burgdorferiorB. microtiinfection, the existing knowledge regarding coinfection disease pathology, and critical factors that have led to ambiguity in the literature regarding coinfection, in order to eliminate confusion in future experimental design and investigation.


2019 ◽  
Author(s):  
Agustín Estrada Peña ◽  
Alejandro Cabezas-Cruz ◽  
Dasiel Obregón

Abstract Background : Ixodes scapularis ticks harbor microbial communities including pathogenic and non-pathogenic microbes. Pathogen infection increases the expression of several tick gut proteins which disturb the tick gut microbiota and impact bacterial biofilm formation. Anaplasma phagocytophilum induces ticks to express I. scapularis IAFGP, a protein with antimicrobial activity while Borrelia burgdorferi induces the expression of PIXR. Here, we tested the resistance of I. scapularis microbiome to A. phagocytophilum infection, antimicrobial peptide IAFGP, and anti-tick immunity specific to PIXR. Results : We demonstrate that A. phagocytophilum infection and IAFGP affect the taxonomic composition and taxa co-occurrence networks but had no effect on the functional traits of tick microbiome. In contrast, anti-tick immunity disturbed the taxonomic composition and the functional profile of tick microbiome, by increasing both taxonomic and pathways diversity. Mechanistically, we show that anti-tick immunity increases the representation and importance of polysaccharide biosynthesis pathways involved in biofilm formation while these pathways are under-represented in the microbiome of ticks infected by A. phagocytophilum or exposed to IAFGP. Conclusions : These analyses revealed that tick microbiota is highly sensitive to anti-tick immunity, while it is less sensitive to pathogen infection and antimicrobial peptides. Results suggest that biofilm formation is a defensive response of tick microbiome to anti-tick immunity.


Author(s):  
Diana N.J. Lockwood

Leprosy is a chronic granulomatous disease caused by Mycobacterium leprae, an acid-fast intracellular organism not yet cultivated in vitro. It is an important public health problem worldwide, with an estimated 4 million people disabled by the disease. Transmission of M. leprae is only partially understood, but untreated lepromatous patients discharge abundant organisms from their nasal mucosa into the environment....


Sign in / Sign up

Export Citation Format

Share Document