scholarly journals Biofilms and antibiotic susceptibility of multidrug-resistant bacteria from wild animals

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4974 ◽  
Author(s):  
Carla Dias ◽  
Anabela Borges ◽  
Diana Oliveira ◽  
Antonio Martinez-Murcia ◽  
Maria José Saavedra ◽  
...  

BackgroundThe “One Health” concept recognizes that human health and animal health are interdependent and bound to the health of the ecosystem in which they (co)exist. This interconnection favors the transmission of bacteria and other infectious agents as well as the flow of genetic elements containing antibiotic resistance genes. This problem is worsened when pathogenic bacteria have the ability to establish as biofilms. Therefore, it is important to understand the characteristics and behaviour of microorganisms in both planktonic and biofilms states from the most diverse environmental niches to mitigate the emergence and dissemination of resistance.MethodsThe purpose of this work was to assess the antibiotic susceptibility of four bacteria (Acinetobacterspp.,Klebsiella pneumoniae,Pseudomonas fluorescensandShewanella putrefaciens) isolated from wild animals and their ability to form biofilms. The effect of two antibiotics, imipenem (IPM) and ciprofloxacin (CIP), on biofilm removal was also assessed. Screening of resistance genetic determinants was performed by PCR. Biofilm tests were performed by a modified microtiter plate method. Bacterial surface hydrophobicity was determined by sessile drop contact angles.ResultsThe susceptibility profile classified the bacteria as multidrug-resistant. Three genes coding for β-lactamases were detected inK. pneumoniae(TEM, SHV, OXA-aer) and one inP. fluorescens(OXA-aer).K. pneumoniaewas the microorganism that carried more β-lactamase genes and it was the most proficient biofilm producer, whileP. fluorescensdemonstrated the highest adhesion ability. Antibiotics at their MIC, 5 × MIC and 10 × MIC were ineffective in total biofilm removal. The highest biomass reductions were found with IPM (54% at 10 × MIC) againstK. pneumoniaebiofilms and with CIP (40% at 10 × MIC) againstP. fluorescensbiofilms.DiscussionThe results highlight wildlife as important host reservoirs and vectors for the spread of multidrug-resistant bacteria and genetic determinants of resistance. The ability of these bacteria to form biofilms should increase their persistence.

2021 ◽  
Vol 7 (8) ◽  
pp. 112
Author(s):  
Lingchao Xiang ◽  
Ozioma Udochukwu Akakuru ◽  
Chen Xu ◽  
Aiguo Wu

Infections caused by pathogenic bacteria, especially multidrug-resistant bacteria, have become a serious worldwide public health problem. Early diagnosis and treatment can effectively prevent the adverse effects of such infections. Therefore, there is an urgent need to develop effective methods for the early detection, prevention, and treatment of diseases that are caused by bacterial infections. So far, magnetic material nanoparticles (MNPs) have been widely used in the detection and treatment of bacterial infections as detection agents and therapeutics. Therefore, this review describes the recent research on MNPs in bacterial detection and treatment. Finally, a brief discussion of challenges and perspectives in this field is provided, which is expected to guide the further development of MNPs for bacterial detection and treatment.


Our Nature ◽  
1970 ◽  
Vol 7 (1) ◽  
pp. 151-157
Author(s):  
R.C. Poudel ◽  
D.R. Joshi ◽  
N.R. Dhakal ◽  
A.B. Karki

Microbial resistance to antibiotics has been emerging in environmental isolates. This study was carried out from October 2008 to January 2009 to describe the antibiotic susceptibility pattern of the bacteria isolated from sewage sludge, biowaste and bioslurry samples. A total of 49 identified isolates were taken for antibiotic susceptibility test. Amikacin and Gentamicin were the effective antibiotics for the Gram negative bacteria, comparatively Escherichia coli was the most sensitive. Similarly, all isolates of Staphylococcus aureus and Enterococcus spp. were sensitive to Tetracycline and Erythromycin respectively and none of these isolates were resistant to Vancomycin. Out of 13 S. aureus, five (38.5%) were Methicillin resistant Staphylococcus aureus (MRSA). The multidrug resistant (MDR) isolates accounted for 46.9%, the highest percentage of MDR isolates was seen in Pseudomonas aeruginosa (9/12, 75.0%). The proper management of multidrug resistant bacteria present in waste is suggestive for environmental and public health.Key words: Multidrug resistant bacteria, Bio-waste, Sewage sludge, BioslurryDOI: 10.3126/on.v7i1.2563Our Nature (2009) 7:151-157 


2019 ◽  
Vol 128 ◽  
pp. 230-235 ◽  
Author(s):  
Carla Dias ◽  
Marta Ribeiro ◽  
Ana Correia-Branco ◽  
Raul Domínguez-Perles ◽  
Fátima Martel ◽  
...  

Pharmaceutics ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1189
Author(s):  
Walaa S. Aburayan ◽  
Rayan Y. Booq ◽  
Nouf S. BinSaleh ◽  
Haya A. Alfassam ◽  
Abrar A. Bakr ◽  
...  

Pressure ulcer or bedsore is a form of skin infection that commonly occurs with patients admitted to the hospital for an extended period of time, which might lead to severe complications in the absence of medical attention, resulting in infection either by drug-sensitive or drug-resistant bacteria. Halicin, a newly discovered drug effective against several bacterial strains, including multidrug-resistant bacteria, was investigated to reduce bacterial infection burden. This study aims to formulate halicin into electrospun fibers to be applied in bedsores as antibacterial dressing to assess its efficacy against gram-positive (Staphylococcus aureus) and gram-negative bacteria (Escherichia coli and Acinetobacter baumannii) by studying the minimum inhibitory concentration (MIC) and bacterial zone of inhibition assays. The diameters of inhibition growth zones were measured, and the results have shown that the drug-loaded fibers were able to inhibit the growth of bacteria compared to the halicin discs. The release profile of the drug-loaded fibers exhibited a complete release of the drug after 2 h. The results demonstrated that the drug-loaded fibers could successfully release the drug while retaining their biological activity and they may be used as a potential antimicrobial dressing for patients with pressure ulcers caused by multidrug resistant bacteria.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 287
Author(s):  
Sandor Kasas ◽  
Anton Malovichko ◽  
Maria Ines Villalba ◽  
María Elena Vela ◽  
Osvaldo Yantorno ◽  
...  

Rapid antibiotic susceptibility testing (AST) could play a major role in fighting multidrug-resistant bacteria. Recently, it was discovered that all living organisms oscillate in the range of nanometers and that these oscillations, referred to as nanomotion, stop as soon the organism dies. This finding led to the development of rapid AST techniques based on the monitoring of these oscillations upon exposure to antibiotics. In this review, we explain the working principle of this novel technique, compare the method with current ASTs, explore its application and give some advice about its implementation. As an illustrative example, we present the application of the technique to the slowly growing and pathogenic Bordetella pertussis bacteria.


2017 ◽  
Vol 15 (2) ◽  
pp. 146-149
Author(s):  
Roshan Thapa ◽  
Narayan Dutt Pant ◽  
Uday Narayan Yadav ◽  
Eliza Thapa ◽  
Anjana Singh ◽  
...  

Background: Patient’s medical charts in hospitals are potentially contaminated by pathogenic bacteria and might act as vehicles for transmission of bacterial infections.This study was aimed to determine the rate of contamination of medical charts by multidrug resistant bacteria.Methods: Sampling of total 250 patient’s medical charts from different wards was done with the help of cotton swabs soaked in sterile normal saline. The swabs thus collected were cultured using standard microbiological procedures.The colonies grown were then identified with the help of colony morphology, Gram’s stain and biochemical tests. Antimicrobial susceptibility testing was performed by using Kirby-Bauer disc diffusion technique. Results: Of the total 250 charts sampled, 98.8% grew bacteria; Bacillus spp. in 40.7%, followed by Staphylococcus aureus (17%), coagulase-negative Staphylococcus spp.(CoNS) (17%), Citrobacter freundii (9.6%) and Acinetobacter spp. (4.5%). Rate of multidrug resistance was highest in Acinetobacter spp. (50%). Among 83 isolates of S. aureus, methicillin resistance was found in 29 isolates. Similarly, two out of total 9 isolates of Enterococcus spp. were vancomycin resistant.Conclusions: This study showed that patient’s medical charts were contaminated with multidrug resistant bacteria including methicillin resistant S. aureus and vancomycin resistant Enterococcus spp. Strict hand washing before and after handling medical charts is recommended.


2020 ◽  
Vol 47 (3) ◽  
pp. 228-234 ◽  
Author(s):  
Han Byul Jung ◽  
Yong Jig Lee

Background A patient’s overall condition sometimes does not allow for the complete removal of a dead eschar or injured slough in cases involving a pressure-injury skin lesion. This frequently occurs in clinical practice, particularly in bedridden and older patients receiving home care or intensive care. Even after debridement, it is also difficult to manage open exudative wounds in these patients. Nevertheless, when a mature or immature eschar is treated without proper debridement, liquefaction necrosis underneath the eschar or slough tends to reveal a large, open wound with infectious exudates. We hypothesized that if the presence of any bacteria under the eschar can be evaluated and the progression of the presumed infection of the subeschar can be halted or delayed without creating an open wound, the final wound can be small, shallow, and uninfected.Methods Using a punch instrument, we performed 34 viable subeschar tissue cultures with a secure junction between the eschar and the normal skin.Results The bacterial study had 29 positive results. Based on these results and the patient’s status, appropriate antibiotics could be selected and administered. The use of suitable antibiotics led to relatively shallow and small exposed wounds.Conclusions This procedure could be used to detect potentially pathogenic bacteria hidden under black or yellow eschars. Since subeschar infections are often accompanied by multidrug-resistant bacteria, the early detection of hidden infections and the use of appropriate antibiotics are expected to be helpful to patients.


Sign in / Sign up

Export Citation Format

Share Document